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Abstract

Many of the lower-level areas in the mammalian visual system are organized retinotopically,
that is, as maps which preserve to a certain degree the topography of the retina. A unit that is
a part of such a retinotopic map normally responds selectively to stimulation in a well-delimited
part of the visual field, referred to as its receptive field (RF). Receptive fields are probably the
most prominent and ubiquitous computational mechanism employed by biological information
processing systems. This paper surveys some of the possible computational reasons behind
the ubiquity of RF's, by discussing examples of RF-based solutions to problems in vision, from
spatial acuity, through sensory coding, to object recognition.

*Weizmann Institute CS-TR 95-29, 1995; to appear in Vision, R. J. Watt, ed., MIT Press, 1996.
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1 Introduction

Receptive fields (RFs) are probably the most ubiquitous computational mechanism employed in
biological information processing. In visual neurophysiology, the RF of a cell is defined as the part
of the visual field in which a stimulus must appear to elicit a response from the cell. The layered
nature of the cortical architecture and the peculiarities of the inter-layer connections that ultimately
give rise to the profiles of individual RFs together constrain the kind of information processing that
can be supported by the cortex. The present essay surveys a number of current theories that
exploit these constraints by explaining cortical function in terms of anatomical, physiological and
computational characterizations of cortical RFs. The theories, all of which deal with vision, span the
range of issues from the basics of sensory coding (section 2), through visual recognition (section 3),
to categorization of novel stimuli (section 4). Section 5, concluding the paper, attempts to identify
certain computational traits, common to all surveyed theories, which may reveal a unifying principle
for the understanding of visual information processing in the brain. This principle is then used to
offer a possible answer to a problem of which vision is only a part: what is it about the world which
makes it perceivable to the senses and comprehensible to the intellect.

The present paper considers only feedforward models, with the explicit aim of examining the
computational capabilities of the machinery of vision excluding lateral and feedback interactions. A
recent survey of the possible computational roles of lateral connections in the cortex can be found in
(Sirosh et al., 1995). As to the role of feedback, whereas the evidence for the involvement of feedback
(top-down) processes in vision is compelling (for a review, see, e.g., Ullman, 1995), it is equally
clear that feedforward (bottom-up) processing plays a central role in rapid formation of extremely
complex percepts (which, of course, may be modified subsequently by top-down influences). The
aim of this paper is, therefore, to explore the extent to which purely feedforward computation can
fulfill the needs of visual perception.

1.1 Receptive fields in the visual pathway: basic issues

The notion of RF was put forward when the first recordings of cell activity in primitive visual
systems showed that cells only respond when the stimulus (usually a small spot of light) is confined
to a well-defined region of the visual field (Hartline, 1938). Subsequently, it was found that not all
portions of a RF contribute equally to the generation of a response, leading to the definition of a
RF profile. For example, the RF of a retinal ganglion cell in vertebrates is composed of a central
region, surrounded by an annulus whose contribution to the response of the cell is opposite in sign
to that of the center.

The emergence of RF as a basic functional unit of visual perception raised three major issues,
each of which remains, to a certain degree, a source of controversy to the present day. The re-
mainder of this section presents an overview of these issues from a neurobiological standpoint; the
computational discussion is to be found in sections 2 through 4.

1.1.1 Detailed profiles

The first controversial issue is that of the best approximation for the spatial distribution of weights
in RFs of simple cells in the primary visual cortex. Prominent candidate models describe the
same data (i.e., measurements of the RF profile, usually carried out using a point light source,
approximating a é-function in intensity) as Gabor patches (Kulikowski et al., 1982) differences of
differences of Gaussians (Hawken and Parker, 1987), derivatives of Gaussians (Koenderink and van



Doorn, 1990), and, more recently, wavelets (Field, 1993; Carandini and Heeger, 1994). Although
some of the debate concentrated on the relevance of the é-function for probing the RF profile,
it is becoming increasingly clear that a resolution of this issue can only be brought about by a
clarification of the computational role! of the simple-cell RFs in the visual pathway (see section 2).
Meanwhile, the center-surround RFs in the mammalian lateral geniculate nucleus (LGN) are usually
modeled as differences of concentric Gaussians, and the simple cells found in the striate cortex —
by Gabor functions:

g(z,y) = e—(mz/Z(AW)2+y2/2(AL)2) cos (2mfx + ) (1)

In equation 1, which corresponds to a vertically oriented RF, AL and AW are the length and the
width of the RF. Differently oriented RFs are obtained by an appropriate rotation of coordinates.

1.1.2 Spatial acuity

The second issue has to do with the apparent loss of visual acuity expected from the relatively
large extent of cortical RFs, and from the large overlap between the RFs of neighboring cells —
a concern that can be traced back to Hartline’s work. The past decade has seen considerable
progress in the clarification of this issue. Specifically, the hyperacuity-level performance of subjects
in psychophysical tasks involving spatial discrimination (Westheimer, 1981) has been matched by
the performance of cortical neurons (Shapley and Victor, 1986; Parker and Hawken, 1987). This has
been accompanied by a better mathematical understanding of the phenomenon of hyperresolution in
channel-based systems (Snippe and Koenderink, 1992), and by advances in computational modeling
of hyperacuity (Wilson, 1986; Poggio et al., 1992; Weiss et al., 1993), as outlined in section 2.1.

1.1.3 Function

The third and most important debatable issue is centered around the question of how, exactly, do
the RFs support the high-level visual function. In relatively primitive creatures such as frogs, the
tendency is to consider RF's as detectors for specific features (Lettvin et al., 1959). In mammals, the
orientation-selective RFs of the primary visual cortex (Hubel and Wiesel, 1959; Hubel and Wiesel,
1968) were at first hailed as precursors of an alphabet of basic features, used by the subsequent
stages of the visual pathway to construct a representation of the perceived shape (see the discussion
in Dodwell, 1978). However, the exact manner whereby elementary features such as line segments
may be combined to represent complex objects remained elusive.? On the contrary, instead of an
orderly and well-defined hierarchy, a qualitative jump seems to occur between the striate cortex and
the extrastriate areas in the ventral visual pathway, where one finds a menagerie of features that
resist a logical description (Desimone et al., 1985; Kobatake and Tanaka, 1994). Following those,
whole-object “features” such as faces, hands, carrots, and abstract drawings of toy tigers are found
in the inferotemporal cortex in monkeys (Gross et al., 1972; Perrett et al., 1982; Tanaka et al.,
1991; Fujita et al., 1992; Kobatake and Tanaka, 1994). A possible explanation for these findings

LOr roles: it is possible that a variety of RF profiles, optimized for different computational tasks, coexist in the
system.

2The problems with this approach are well exemplified by the lack of progress in edge-based hierarchical shape
representation in computer vision. This approach has been inspired by the work of Hubel and Wiesel (much cited
in computer vision and pattern recognition literature in the 1970’s), and developed formally by Marr and others
(Hildreth, 1987). For a discussion of the difficulties encountered by Marr’s program, see (Edelman, 1996).



will be offered in section 4. To set the ground for it, we now turn to a discussion of computational
properties of systems of RFs.

1.2 Parallel distributed processing and RFs

RF's constitute an important variation on the theme of computing with connections, which is central
to many distributed models of perceptual and cognitive functions. A system of RFs can be derived
from a generic connectionist model, by constraining its architecture as described below.

1.2.1 General-purpose computing with connections

A generic two-layer connectionist model implements a mapping between its input and output spaces
by assigning appropriate weights to each possible pairing of input and output units, with the
weighted sum fed through a nonlinearity which determines the output value. It is well known that
a three-layer model of this type can approximate any smooth function to an arbitrary precision
(Cybenko, 1989). The universal approximation property, along with the availability of a training
algorithm which allows the weights to be learned from examples (Rumelhart et al., 1986), made
the multilayer perceptron (MLP) a popular tool in modeling cognition.

In modeling perception the use of MLPs appears to be more limited. As in cognition, replication
of human performance in perceptual tasks requires a judicious choice of the input and output
representations. Unlike in cognition, however, this choice is no longer unconstrained: we know
exactly what the input to the visual system looks like. The first problem with the direct application
of MLPs to the processing of images is that the topological structure of the input (namely, the
neighborhood relationships between the image pixels) is lost in the MLP network, where there
is no difference between the various components of the input vector (LeCun and Bengio, 1995).
Another problem that arises in the application of MLPs to image-related tasks has to do with
the computational complexity of learning. As observed in (LeCun and Bengio, 1995), a network
configured for direct processing of images will typically include hundreds of thousands of weights. In
such a case, the required number of examples makes the problem unmanageable from the standpoint
of learning theory (Haussler, 1992). As we shall see below, the steps that may be taken to alleviate
these two problems lead to the transformation of fully-connected MLPs into networks of structured
localized RFs.

1.2.2 Computing with structured connection patterns

In contrast to MLLPs, where the pattern of connections is a priori completely unstructured, one may
think of a model in which each unit is labeled by a set of coordinates, and a certain computation
over spatially defined patterns is realized by a fixed spatial distribution of weights determined by
the task. An example of such a computation is the log-polar mapping proposed in (Schwartz, 1985)
as a model of the spatial transformation carried out by the mapping of the visual world onto the
primary visual cortex. This model is based on the observation that a complex logarithmic mapping
transforms a scaled version of a pattern into a translated version of the same pattern at the original
scale. A hardwired mapping of this kind (which resembles to some extent the retinocortical mapping
in mammals) would help the visual system achieve perceptual invariance with respect to scaling
— a transformation which, presumably, is more difficult to cope with in a distributed fashion than
translation, which may be accommodated using gaze control, possibly combined with some variant
of shifter circuits (Pitts and McCulloch, 1965; Anderson and Van Essen, 1987).



A general framework which includes the log-polar mapping as a special case is the spatial (lay-
ered) model of distributed computation proposed in (Mallot et al., 1990). Within this framework,
the pattern of weights that realize a mapping between successive layers is allowed to change with
location, as defined by the anatomical variables associated with the model. The weights, along with
the physiological variables that relate to the pointwise nonlinearities and time factors, determine
the response of each unit at a given moment of time. In practice, this framework has been applied
to the development of an algorithm for optical flow processing and obstacle detection (Mallot et al.,
1991). It should be noted that, among other things, the layered computation model allows the input
to a unit in a given layer to be confined to a spatially defined subset of units in the preceding layer.
As we shall see in the next section, this leads directly to the notion of receptive field, as defined
operationally by sensory physiologists.

1.2.3 Convolutional NNs and receptive fields

Confining the input to a unit to a localized compact subset of units in the preceding layer addresses
the problem of natural encoding of the topology of images, but does not solve the problem of the
complexity of learning in networks with too many parameters. A standard solution for this problem
calls for making the weight pattern within each RF the same, resulting in a drastic reduction in
the number of independent parameters in the model (LeCun and Bengio, 1995). The action of
the network on the image becomes then equivalent to a convolution with a bank of translationally
invariant receptive fields. The convolutional network resulting from this so-called weight sharing
thus occupies an intermediate position between two extremes: hand-tailored connection patterns
on the one hand, and universal function approximation schemes on the other hand.

2 Sensory coding

This section surveys a number of theories that attempt to explain the RF profiles found in the
initial stages of vision in terms of the first action that must be taken by any perceptual system:
sensory coding. Although it is generally agreed that the goal of sensory coding is to cast the
input stimulus into a form most appropriate for further processing, little consensus exists as to how
to interpret the available data on the transformations actually carried out in the visual pathway.
Among the more general design goals invoked in this context are spatial resolution (Barlow, 1979b),
information-theoretic fidelity of reconstruction (Ruderman, 1994a), preservation of information and
its efficient encoding (Linsker, 1990; Atick, 1992), efficient learning (Barlow, 1990), and a variety
of approaches based on a hypothesized correspondence between the properties of the code and the
statistics of natural images (Barlow, 1959; Ruderman, 1994b).

2.1 Interpolation or channel coding?

The considerable spatial extent of even the smallest RFs in the primary visual cortex raises a basic
issue of spatial resolution: how can units with extended and overlapping RFs support hyperacuity,
that is, resolution much better than the size of the individual RF, or the size of the retinal pho-
toreceptor (see Figure 1)7 In 1979, Barlow proposed that hyperacuity may be the result of spatial
interpolation of the signal sampled by the retinal mosaic. He also pointed out that the densely
spaced cells in the granular layer of the striate cortex in monkeys may support such interpolation,
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Figure 1: Vernier hyperacuity. Subjects normally perceive the sense of a 20 arc sec displacement of
the lower line segment with respect to the upper one, and can be trained to perceive displacements
as small as 5 arc sec. This threshold is smaller than the spacing of cones in the fovea (about
30 arc sec), and is tiny compared to the RFs found in the primary visual cortex (a typical size
of the central region is about 20 arc min; RFs of neighboring cells overlap by about the same
amount). See section 2.1.

provided that the RF's of granular cells have a spatial profile of the form sin(z)/z (the interpolation
kernel required by the sampling theorem).

The interpolation approach to the modeling of hyperacuity may be understood as an attempt
to make it possible to base spatial judgment decisions on the activities of single cells (something
which cannot be done even at the level of retinal receptors, whose size is much larger than the
typical hyperacuity thresholds). In addition, interpolation (aimed at achieving the highest possible
resolution under the limit imposed by the optics of the eye) has a natural place in theories that
consider reconstruction of the visual world to be chief goal of vision (see also section 3.1.1). That
very assumption is, however, debatable (Edelman, 1994). In particular, it appears that recon-
struction (i.e., interpolation of the stimulus at the highest possible resolution) is not necessary to
explain the hyperacuity-level performance of biological visual systems; simple comparison of vectors
of activities of RFs may suffice (Wilson, 1986).

A mathematical understanding for this finding has been provided by a recent work (Snippe
and Koenderink, 1992) which analyzed the capabilities of population coding of spatial signals
(as contrasted with coding by activities of single units). Snippe and Koenderink determined the
discrimination threshold of an ideal observer given the activities in an array of RFs, which were
assumed to have a Gaussian response profile, with an unknown width. Specifically, they derived
a formula for the threshold as a function of the width of the Gaussian, the distance between two
neighboring receptors, and the functional dependence between the noise and signal in each RF. It
was found that the threshold can be made arbitrarily small compared to the tuning width, if there
is considerable overlap between the RFs. Thus, as far as spatial resolution is concerned, the exact
profile of the individual RFs is of little importance, as long as it is graded and as long as the RF's



Figure 2: An intuitive explanation of hyperacuity based on channel coding by graded-profile over-
lapping RFs; see (Snippe and Koenderink, 1992) for the mathematical details. a. “pixel-like”
representation. Such a system cannot resolve spatial structure that is finer than the size of the
individual “pixel.” b. RF-like representation. Because of its graded profile, the activity of each RF
conveys information regarding the location of small details of the stimulus. Pooling information
across different RF's (possible because of the considerable overlap between neighboring RFs) further
improves the spatial resolution of the resulting system. The contribution of each RF to the decision
can be determined by learning appropriate weights from examples (Poggio et al., 1992; Weiss et al.,
1993).

of neighboring units overlap by a large amount (see Figure 2).

2.2 Feature detectors or spatial frequency analyzers?

The apparent lack of progress (both experimental and theoretical) in putting together a unified view
of the hierarchy of features in the spirit of Hubel and Wiesel pioneering work prompted a number
of investigators in the late 1960’s to look for a suitable mathematical framework that would guide
further research and help explain the results. Fourier transform has been put forward as one such
candidate framework (Campbell and Robson, 1968).

2.2.1 Gratings

The motivation behind the attempts to describe the visual system as a Fourier analyzer lies in the
universality of the sinusoidal grating as a basic component of more complex stimuli. In principle,
thus, one may study the responses of cells in the visual pathway to gratings, hoping to understand
eventually how they would respond to arbitrary patterns, described as superpositions of simple
gratings. In addition, the Fourier hypothesis served as an explicit antithesis to the feature detector
idea: “Since most visual patterns, in our visual experience, can be shown mathematically to be
composed of a series of spatial frequencies, the hypothesis that at least a class of cortical cells
function as spatial frequency detectors seems to be, at the present time, more economical than to
suppose an infinity of detectors for the infinite number of visual patterns” (Maffei, 1978, p.64).
Because the limited spatial extent of real RFs means that only local Fourier decomposition can
be assumed, Fourier theories of visual coding have been virtually superseded by wavelet theories, a
newly developed framework for signal expansion that relies on basis functions which are localized
and have a number of other useful properties (Field, 1993) (see section 2.4). I now turn to consider
the view of cortical RFs as feature detectors, which predates the various transform theories, and



which, in the final account, may well displace them completely from explanations of higher visual
functions such as recognition and categorization.

2.2.2 Features

The concept of a feature detector developed under the influence of the discovery of “bug detec-
tors” in the frog retina (Lettvin et al., 1959), and was linked to the notion of behavior-releasing
mechanism, borrowed from ethology. It was quickly generalized to encompass higher perceptual
functions such as shape recognition. A well-known proposal for an object recognition scheme based
on feature detectors — the Pandemonium (Selfridge, 1959; Lindsay and Norman, 1977) — con-
sisted of a three-level hierarchy: feature demons (responsible for the detection of lines, corners,
etc.), cognitive demons (responsible for entire objects) and a master demon (responsible for the
recognition decision; cf. Figure 8).

The proponents of the so-called computational view of vision (which should be more properly
termed reconstructionist) did not seem to believe in the possibility of implementing any visual
function of interest using feature detectors as building blocks (see (Marr, 1982), ch.7). The main
objection leveled by Marr (op. cit., p.341) was that “the world is just too complex to yield to the
types of analysis suggested by the feature detector idea.” This objection, however, is being proved
unfounded in more and more areas of visual perception.

As an example, consider the perception of coherent motion, a visual task intensively studied
on all levels, including that of neurobiological implementation. In the middle temporal (MT)
cortical area in the monkey, one can find cells with receptive fields tuned to coherent motion in a
particular direction (Newsome and Paré, 1988). The ensemble of activities of these cells may be
regarded as representing the motion of the visual field seen by the animal, in a distributed non-
reconstructionist sense. The ability of experimenters to bias the perceptual decision of the monkey
by electrical stimulation of single MT cells (Salzman et al., 1990) indicates that the activity of an
MT cell indeed constitutes a representation of the stimulus motion (for a philosophical perspective
on this issue, see (Albright, 1991)). Specifically, because the activity of a given MT cell co-occurs
with a certain well-defined motion in the visual field, and because artificial stimulation of the cell
causes a behavioral response similar to the one precipitated by a real moving stimulus, the cell’s
firing for all practical purposes represents the motion event as far as the monkey is concerned. The
visual motion, however, can hardly be considered as reconstructed in the activity of an MT cell.
Moreover, it is not clear whether the pattern of activity of an ensemble of MT cells (or of cells in
areas that precede MT in the M pathway) can or need to carry out such reconstruction.

How many of the motion detector cells are necessary to support perceptual performance similar
to that of the entire organism? Newsome and his collaborators estimate this number to be about 30.
Interestingly, combined responses of a similar number of shape-selective cells in the inferotemporal
(IT) cortex in monkeys can be used to replicate the psychophysically defined threshold in a shape
matching task (Miller et al., 1993). These results vindicate Barlow’s doctrine which assigned to
single cells a central role in supporting perception (Barlow, 1972; Barlow, 1979a). They also
demonstrate the viability of feature-detection theories of sensory coding and of visual recognition,
and account for the renewed interest in Selfridge’s Pandemonium (discussed below, and again in
section 5.1).



2.3 Suspicious coincidences and Barlow’s Probabilistic Pandemonium

A research program aimed at putting the notion of feature detectors on a firm theoretical basis
has been recently outlined by Barlow (1990). The theory is based on Barlow’s earlier proposal to
consider suspicious coincidences to be the basic type of event to which the cerebral cortex must
attune itself (Barlow, 1985). Assuming that a major task of the brain is to form a statistical
model of the world, Barlow asked what kind of event would be worth noting and making a record
of. Clearly, neither isolated events (the falling of a stone) nor repeated occurrences of events (the
ticking of a clock) deserve paying too much attention to. In contrast, a co-occurrence of two events
may call for investigation or may justify remembering, but only if this co-occurrence is surprising
(i.e., unlikely), given prior knowledge regarding the occurrence of the individual events.

These ideas also fit nicely with the BCM theory of visual cortical plasticity, according to which
vectors of synaptic weights seek to become orthogonal (in the input space) to frequently occurring
events, and non-orthogonal to events occurring with low probability (Bienenstock et al., 1982). A
generalization of the BCM theory that addresses the problem of extracting statistically significant
features from multidimensional data has been formulated in (Intrator and Cooper, 1992). This
approach defines an event as a peak in the input probability distribution; a suspicious event is then
signalled by the occurrence of a peak away from the origin, in a low-dimensional projection of the
input space.> The BCM rule for synaptic weight modification effectively seeks such projections,
along which the probability density deviates maximally from a Gaussian distribution.* The RFs
of units trained with the BCM rule are thus tuned to the detection of low-dimensional structure in
the high-dimensional input space.

The probabilistic line of reasoning suggests that sensory coding is “... the process of preparing a
representation of the current sensory scene in a form that enables subsequent learning mechanisms
to be versatile and reliable” (Barlow, 1990). Specifically, a representation is useful for learning if it
includes records of recurring and co-occurring events. As noted by Barlow, a convenient substrate
for such a representation is provided by Selfridge’s Pandemonium. In Barlow’s Probabilistic Pan-
demonium, the response strength of a feature-detector demon would be proportional to —log P,
where P is the probability of occurrence of the feature the demon detects. Similarly, in the BCM
theory, the response of a feature detectors becomes proportional to the inverse of the probability
of occurrence of the event to which it is tuned, up to some saturation limit (Intrator and Cooper,
1992). Although the difficulty of coming up with independent features and with monitoring the
statistics of occurrence of each of them should not be underestimated (Barlow, 1994), this is cer-
tainly a worthy goal for any perceptual system, because of the ability it would confer to learn and
reason in an informed and principled manner.

2.4 Statistics of natural images

The idea of a Probabilistic Pandemonium outlined above serves as a natural introduction to the
current attempts to tie the properties of the visual pathway to the statistics of natural images.
The following discussion touches briefly on some of the relevant works; for an extensive survey, see

3The peak around 0 is considered noise; a suspicious event is simply a sharp peak (ideally, a -function) above
the noise at that point, where the noise is given by the marginal probabilities. For example, if A is the event that
it rains and B is the event that a chair falls, then a chair falling when it rains is suspicious if there is a peak in the
joint probability distribution that satisties p(A, B) > p(A) - p(B).

*Due to the central limit theorem, most projections are Gaussian, and thus can be described completely by their
covariance matrix (second-order statistics).



(Ruderman, 1994b).

The statistics approach to the understanding of sensory coding has been proposed in (Barlow,
1959), in a paper that appeared in the proceedings of the same conference that included Selfridge’s
article on the Pandemonium. Nearly thirty years later, an investigation of the statistics of a small
sample of natural images has been described in (Field, 1987). The central finding of Field’s study
is the 1/ f fall-off of the amplitude spectra of the images, which can be interpreted as a sign of self-
similarity of the image structure across scales. Given this property of natural images, Field pointed
out that in a collection of frequency-selective channels with constant bandwidths (in octaves), and
a uniform tiling of the orientation space, the outputs of the different channels or RFs will have
roughly the same variance. If, in addition, the statistics of the image are stationary with respect
to the location in the visual field, then each RF (characterized by size, orientation, and location)
will carry about the same information.

The particular code proposed by Field is log-Gabor. It resembles the Gabor model of cortical
simple cells (see equation 1), except that in a log-Gabor system the frequency response and not the
spatial profile envelope is Gaussian. This results in the required rosette-like tiling of the frequency-
orientation space, in which each RF has a constant bandwidth on a logarithmic scale, with the
preferred orientations of different RFs evenly distributed. It should be noted that the proposed
code is complete (the total number of RFs is the same as the number of image pixels), and therefore
does not reduce redundancy (Field, 1987, p.2391).> Thus, it serves as a first step towards the
computation of statistically independent features (following Barlow’s notion of the goal of sensory
coding), and not as its immediate implementation. Instead of reducing redundancy, Field’s code
redistributes it in such a manner that higher-order correlations (those between pairs, triplets, etc.,
of pixels) are converted into first-order redundancy, that is, into a nonuniform response distribution
of the RF's. Thus, each RF is likely to respond strongly or not at all; this skewed distribution can
be taken advantage of in a subsequent processing stage, which may code only the highly active
RFs.

In a subsequent work, Field (1994) develops this idea into a theory of sparse distributed coding
in the visual system. The sparseness of the code is measured by the kurtosis (fourth moment) of
the distribution; it is shown that a wavelet code (related to the log-Gabor code mentioned above)
results in an increase of the kurtosis of the distribution of values of RF responses, compared to
that of pixel-coded natural images. The sparse coding hypothesis may be contrasted with another
approach whose goal is to minimize the number of active RF's, namely the Principal Component
Analysis (PCA) coding, proposed by a number of researchers as an explanation for the cortical
RF profiles (Linsker, 1990; Miller, 1990; Hancock et al., 1992). The main difference between the
PCA and the sparse coding hypotheses is that the former attempts to achieve the best possible
reconstruction of the images in the input ensemble, with as few RFs as possible. As a result, in a
PCA code all the output units (of which there is a small number) are active for all input images,
whereas in a sparse code, in which the number of output units may be large (in fact, it may be equal
to the number of input units), only a small proportion of units respond to any particular image.
The advantage of the sparse code for supporting learning strategies based on Barlow’s notion of
suspicious coincidences is clear; additional advantages are discussed in (Field, 1994).

5The redundancy of a set of images is defined in terms of conditional probabilities of their components. For
example, the first-order statistics of a set of images represented as pixels is the probability distribution of the different
pixel values; the second-order statistics is the conditional probability of a pixel having a certain value, given the value
of another pixel, etc.
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3 Recognition

In the preceding sections, we have seen that decisions regarding the spatial structure of the input
can be carried out directly on the basis of the responses of graded overlapping RFs, and that a
perceptual code based on RF activities can be made to reflect statistically important features of the
visual world. I will now examine the hypothesis that recognition too can be carried out directly®
in a feature space spanned by RF activities.

If an RF-based representation is to be used directly for recognition, it must fulfill two require-
ments. First, the distances in the space spanned by the RF activities must reflect the distinctions
among objects that are to be recognized; this requirement is discussed in detail in section 3.1. Sec-
ond, it should be possible to combine the activities of the RFs into a criterion that would support
the recognition decision; this problem is treated in section 3.2.

3.1 Remapping of similarity spaces

The requirement that the RF-space similarity among object representations reflect the similarity
among the corresponding objects amounts to the proposition that the computational role of the
early stages of vision is to redress the distortion in the proximal (RF or representation-space)
distances between shapes, introduced by the peculiarities of the distal to proximal (viewing) trans-
formation. These include the effects of illumination, object pose, distance, and imaging (perspective
transformation). For example, the RF-space similarity between two images of the same face ren-
dered under different illuminations is likely to be lower than the similarity between images of two
different faces rendered under identical illumination conditions. A visual system needs to undo
this effect of illumination, that is, to solve an instance of a problem that became known as inverse
optics (the direct optics being the process of image formation).

3.1.1 Inverse optics: RFs and regularization

Inverse problems, including those arising in the measurement of visual similarity, are frequently
ill-posed, that is, they may have no solution, or the solution may not be unique, or may not depend
smoothly on the data (Poggio et al., 1985). A well-known method for approaching such problems
is regularization. Consider the equation

y=Az (2)

where A is the direct operator (assume for the moment that A is linear). In a typical situation
that may arise in vision, A relates a vector of distal variables z to a vector of measurements y. For
example, the former may be the distribution of reflectance values across the surface of an object,
and the latter — intensity measurements, in which reflectance is confounded with illumination.
Obviously, one is interested in the recovery of z given y, that is, in the inversion of the operator A.
For a number of reasons, this problem tends to be ill-posed, forcing one to modify its formulation
to obtain a unique well-behaved solution: instead of trying to solve equation 2, one looks for such z
that would minimize

1Az = ylI* + Al Pz||” (3)

5The “directness” of recognition under this hypothesis is in the spirit of Gibson (1966).
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where P is a stabilizing functional, and A expresses the degree of compromise between the data and
the stabilization terms. To find z that minimizes this expression, set to 0 its derivative with respect
to z. The resulting Euler-Lagrange equation in z is linear, and the solution is therefore of the form
z = Ly, where L is a linear operator; if the problem were well-posed, L would be simply the inverse
of A, or its pseudoinverse, if A is not invertible (Hurlbert and Poggio, 1988). Suppose now that we
are given a set of measurement vectors {y;}, taken at different retinal locations, and the goal is to
recover the corresponding {z;}. Assuming that the action of L on y; should not depend on i, the
solution to equation 3 can be formulated in terms of a convolution between a bank of RFs and the
data {y;}.

What if the operator A is nonlinear? If A is differentiable, one can still try to linearize the
problem (Bertero et al., 1988). If an approximate solution to equation 2, now written as y = A(z),
is known, it is possible to formulate a linear equation

0yo = Agbzg (4)

where 6yo = y — A(z0), 620 = z — 29, and Ap is the derivative of A at zy. The solution to this
equation can then be refined iteratively, according to the Newton-Kantorovich method (Bertero
et al., 1988). Thus, the linearization makes it possible (1) to obtain an approximate solution to
the problem in a one-shot computation, and (2) to refine this solution by iterating feedforward
and feedback processing steps (Kawato et al., 1993). Because the feedforward computation step
corresponds to a convolution of the data with appropriately shaped RFs, the simple linear concept
of RF as a spatial weighting function can be seen to stem naturally from a regularized solution to
vision, when the latter is considered as an inverse problem (Poggio et al., 1985).7

3.1.2 Similarity within and between object classes

Consider now a general formulation of the problem of remapping similarity patterns so that they
would suit the needs of object recognition (Edelman, 1995a). Let xgﬁ) be any two distinct images
of object A (obtained under different illuminations or taken from different viewpoints, or both),

and XSB) be an arbitrary image of object B. Denote the action of the feature extraction stage (that
is, a bank of RFs) by a vector-valued function f(x) : R¥ — RF. It is desirable that the action of
the RF's lead to a gain in object constancy, that is,

d (£ (xV) £ (x{V)) <d (x5, =) (5)

where d is a suitable metric on R¥. At the same time, to increase object discriminability, it is
required that

4 (£ (x69) £ (x62)) > d (x69, %) )

One may ask whether the initial stages of the mammalian visual pathway indeed satisfy the
requirements expressed by the inequalities 5 and 6. A recent computational study obtained an affir-
mative answer to this question for a particular class of objects: human faces (Weiss and Edelman,

"Interestingly, detailed empirical derivations of linearized solutions for the recovery of lightness (Hurlbert and
Poggio, 1988) and shape from shading (Knill and Kersten, 1990) yield RF profiles resembling the difference-of-
Gaussian RF's found in the LGN cells in the mammalian visual pathway.
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1995). Specifically, when the recognition was carried out in a space spanned by oriented filters
resembling simple-cell RFs, the error rate dropped from about 30% (achieved with a pixel-based
representation) to 4%.2 Two sources for this improvement can be distinguished. The first one,
related to the notion of inverse optics, has to do with the contribution of the RFs to inverting the
effects of illumination and viewpoint. The second source of improvement falls under the general
label of class-based processing (Lando and Edelman, 1995): it turns out that in the presence of
inherent (geometric) similarity between objects, their RF-space representations tend to undergo
similar transformations when the viewing parameters change (see Figure 3). A full account of these
effects awaits further investigation.

View 1 Vi ew 2

Individual u e -9
Individual v e -9
Individua w e -

| ndi vi dual x

Figure 3: Experience with a number of shapes belonging to the same class (in this case, the class
of faces) undergoing a certain transformation can serve as a basis for the generalization of that
transformation to a new member of the same class of shapes (i.e., a new face). Recognizing a
face from an unfamiliar viewpoint calls for the normalization of its representation in some feature
space that preserves face identity, e.g., in the space spanned by properly chosen RFs (Lando and
Edelman, 1995).

3.2 Recognition as function approximation

We have seen that a pattern of activities of RFs can be made to reflect properties of the viewed
object, discounting to a certain extent factors that are irrelevant to recognition. To carry out the
recognition step itself, the RF activities have to be combined into a decision criterion. The goal
of this stage may be, for example, to compute for each object known to the system a number
between 0 and 1 that would correspond to the system’s confidence as to its presence in the input.
A general approach to this problem, valid in vision as well as in other domains, is to apply a
standard technique for learning from examples, or, equivalently, function approximation (Poggio,
1990). A method that is particularly suitable in the present context is approximation by radial
basis functions (RBFs).

The computational reason for the feasibility of this approach is basically the smoothness of
the manifold formed by the different views of the same object in the space of views of all possible

8A radial basis function (RBF) classifier was trained on one image per face; generalization was tested on other
images, taken with different illumination and viewpoint.
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objects (Poggio and Edelman, 1990).° An RBF approximation module effectively constructs the
manifold by computing its “height” over the input measurement space as a linear combination of
the contributions of the data points (see Figure 4). The contributions are determined by placing a
kernel (that is, a basis function) at selected points {x;}, so that

£ = 3 K (xix,) (7

and by computing the weights ¢; that minimize the approximation error ¥, (y — f(x))? accumu-
lated over all the data {X,,¥.}. A good choice for the shape of the kernel K (x;x;) is the Gaussian
G(x;x;) = ellx—xill*/ 7, because of the universal approximation properties of linear superpositions
of Gaussians (Hartman et al., 1990), because it can be derived from a regularized solution to the
approximation problem, as well as for other reasons (Poggio and Girosi, 1990). The Gaussian kernel
is especially relevant in the context of visual modeling, because it makes it possible to interpret
equation 7 as a linear combination of products of activities of 2D image-based Gaussian RFs. In
other words, 2D RFs can be combined multiplicatively to form the multidimensional Gaussians
that serve as the basis functions in the expansion (Poggio and Edelman, 1990).

4 Categorization

Unlike in recognition, where the problem is to identify a view of a previously seen object as such, in
categorization the “correct” outcome of the process is ill-defined (and, a fortiori, cannot be included
in a training set for a function approximation module). Counsider, for example, an animal, whose
shape and color have seemed strange to the European travelers who first saw it (see Figure 5, left).
Clearly, it can be easily classified, in the sense that it evokes naturally an impression of resemblance
to familiar shapes (this particular object can be described, e.g., as looking somewhat like a camel
and somewhat like a leopard). At the same time, it is very much unclear what output should be
imposed on a function approximation module faced with the task to learn such categorization. Fur-
thermore, the smoothness principle, which guarantees the success of the approximation approach
to recognition, is not applicable in this case. In recognition, the different views of the same object,
under appropriate encoding, can be shown to lie on a smooth hypersurface; in contrast, in cate-
gorization nothing can be said in general regarding the locus of points corresponding to arbitrary
shapes in the space of all possible shapes.

Because of these problems, the standard approach to the understanding of the human perfor-
mance in shape categorization has been to postulate the recovery of stimulus geometry prior to
any processing — including recognition (Marr, 1982). However, just as reconstruction has proved
unnecessary in spatial discrimination and in recognition, it seems that categorization as well can be
carried out without first building a representational replica of the visual world. A different princi-
ple, based on the notion of faithful representation of the shape-space distances between objects, can
be invoked to guide the development of a categorization module based on function approximation.
Interestingly, this principle leads to the concept of a receptive field in the shape space (Edelman,
1995¢).

9This observation has been made originally for objects composed of point-like features localized in 3D (Ullman
and Basri, 1991); clearly, it applies also to the more realistic case of surfaces rendered and then transduced by a bank
of graded-profile RF's; see section 4.
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Figure 4: Standard techniques for function approximation can be used to construct a characteristic
function for a given object from a collection of its views (see section 3). Here, radial basis function
approximation in the space of all views of an object is carried out by forming a weighted sum of
responses of RF's tuned to some of the views. The graded response of the resulting module defines
a RF in the shape space (the response grows with increased similarity between the input and the
object on which the module has been trained). This property of the RBF recognizer is used in
section 4 to construct a categorization mechanism for novel objects.

4.1 Similarity to prototypes

Note that, according to the reconstructionist approach, there should be an isomorphism between
the representation and the entity it stands for: “representation of something is an image, model,
or reproduction of that thing” (Suppes et al., 1994). This amounts to the Aristotelian idea of
representation by resemblance, which happens to have been discredited so thoroughly as to become
a rare point of consensus in the philosophy of mind (Cummins, 1989). Barring resemblance, or
“first-order structural isomorphism” (Shepard, 1968) between the object and the entity that stands
for it internally, what relationship can qualify as representation of something by something else?
Shepard (1968) suggests “second-order” isomorphism: “...the isomorphism should be sought —
not in the first-order relation between (a) an individual object, and (b) its corresponding internal
representation — but in the second-order relation between (@) the relations among alternative
external objects, and (b) the relations among their corresponding internal representations. Thus,
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Figure 5: A strange object (a cameleopard, left) and two more familiar ones (center, right). See
section 4.

although the internal representation for a square need not itself be square, it should (whatever it
is) at least have a closer functional relation to the internal representation for a rectangle than to
that, say, for a green flash or the taste of a persimmon,” (Shepard and Chipman, 1970, p.2).

4.2 Conditions for veridical representation

An illustration of the principle of representation by second-order isomorphism appears in Figure 6.
Let us now identify mathematical conditions under which isomorphism between distal and proximal
relations gives rise to representation which is, in a sense, true to the original. Let D be the set of
distal objects, and P — the set of internal tokens that participate in the process of representation.
Let f: DCD — X and g : P C P — Y be functions defined, respectively, over sets of distal
and proximal entities (no restriction needs to be placed at this stage on the number of arguments
of f,g). According to the requirement of second-order isomorphism, D is isomorphic to P under a
mapping M if VD C D, f(D) ~ g(M (D)), where the relation ~ is that of set isomorphism, defined
over X, ). To constrain the choice of M, we have to be more specific in defining the functions f,g.
In the context of shape perception, it is natural to consider for this purpose similarity (actually, two
similarity functions must be defined, one for the external objects and one for the internal tokens
standing for those objects). Intuitively, we would like the representation to capture the similarity
relationships within and between natural kinds (Quine, 1969). More specifically, similarity is seen
to be relevant both to recognition, in which case resemblance between the viewed shape and some
previously seen ones is to be assessed, and to categorization, where similarities between a shape and
a number of shape classes are compared (Nosofsky, 1988; Goldstone, 1994). For a pair of internal
representations, similarity is not directly observable, but can still be defined operationally as the
degree to which an optimal stimulus for one token activates the other one (Shepard and Chipman,
1970; Edelman, 1995c).

As noted in (Nicod, 1930; Quine, 1973), similarity should be construed as a triadic relation:
knowing that A is more similar to B than to C is much more informative than merely knowing that
A is similar to B and B to C. Furthermore, we may assume that similarity is defined qualitatively
and not quantitatively, that is, the range of f,gis X = Y = {>, <}. This assumption limits neither
categorization (because knowledge of similarity for every triplet of points belonging to a metric
space defines unequivocally the clustering of the points), nor recognition (because the location of
each point can be recovered from triadic similarities using nonmetric multidimensional scaling).
We thus obtain f : D x D x D — {>,<}, and, analogously, g : P X P x P — {>,<}. The
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Figure 6: Clustering by similarity, and its representation that fulfills the requirement of second-
order isomorphism (in this case, isomorphism between distance ranks in the represented and the
representing spaces).

condition on M then becomes: VD1, Dy, D3 € D, f(D1,D2,D3) = g(M(D1), M(D2), M(D3)). In
other words, the mapping M is required to preserve similarity ranks.

4.3 Constraints on the distal structure

The notion of similarity can be naturally formalized if the distal shape space and the internal
representation space are both endowed with metric structure, in which case (dis)similarity in each
space can be derived from the appropriate distance function. Now, to demonstrate the existence of
a metric for a given shape family (i.e., a subspace of the shape space), it suffices to exhibit at least
one parameterization scheme common to all the shapes in the family. A metric on shapes can then
be defined simply as the Euclidean distance in the underlying parameter space R™. Some examples
of objects produced using a common parameterization for a family of animal-like shapes are shown
in Figure 7.

4.4 Constraints on the distal-to-proximal mapping

Strict rank preservation. The similarity ranking of three distinct points x,y,z € R"™ can be
formalized via the notion of their simple ratio, defined as (x,y,z) = |x —y|/|y — z|- Obviously, a
mapping S : R™ — R"™ preserves distance ranks iff it preserves (x,y,z) for any choice of points.
A bijective mapping S with this property must be a similitude, that is, a mapping of the form
S(x) = AP(x), where A > 0, A € R, and P : R™ — R™ is an orthogonal transformation (Reshetnyak,
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Figure 7: Four shapes jointly parameterized by a set of 57 parameters (Manolache and Edelman,
1993). The possibility of such parameterization for a given shape family is a prerequisite for its
veridical representation, as argued in section 4.3.

1989). Thus, the requirement of rank preservation is quite restrictive in the class of mappings it
allows.

Local rank preservation. In one or two dimensions, the rank preservation requirement is satis-
fied locally by any well-behaved mapping. Specifically, a mapping realized by an analytic function
with a non-vanishing Jacobian in a given region is conformal there (Cohn, 1967). Such a function
preserves similitude of small triangles; in particular, a scalene triangle formed by a triplet of points
will be mapped into a triangle with the same ranking of side lengths (see Figure 6). In higher
dimensions, conformality is much more restrictive. As proved by Liouville in 1850, already for
n = 3 there are no conformal mappings from R"™ to itself besides those which are composed of
finitely many inversions with respect to spheres. Such mappings, called Mobius transformations,
constitute a finite-dimensional Lie group which includes the group of motions in R™ and is only
slightly broader than that group (Reshetnyak, 1989).

Local approximate rank preservation. A considerably broader class of mappings emerges
if the requirement of conformality is replaced by that of quasiconformality. Intuitively, a regular
topological mapping is quasiconformal if there exists a constant ¢, 1 < ¢ < oo, such that almost
any infinitesimally small sphere is transformed into an ellipsoid for which the ratio of the largest
semiaxis to the smallest one does not exceed g (Reshetnyak, 1989). Under such a mapping, the
ranks of distances between points are preserved approximately, on a small scale (Viisdld 1992,
p.124).

How relevant is local approximate preservation of distance ranks, offered by a quasiconformal
distal-to-proximal mapping M, to the representation of real-world shapes? A part of the answer
to this question emerges from a consideration of the hierarchical structure of perceived categories.
Numerous studies in cognitive science reveal that in the hierarchical structure of object categories
there exists a certain level, called basic level, which is the most salient according to a variety of
criteria (Rosch et al., 1976). Taking as an example the hierarchy quadruped, dog, terrier, the basic
level is that of dog. Objects whose recognition implies less detailed distinctions than those required
for basic-level categorization are said to belong to a superordinate level. A reasonable assumption
is that faithful representation of similarities is required within superordinate categories (e.g., within
quadruped: giraffe to camel, leopard, horse), and, of course, within basic categories, but not between
superordinate categories. In other words, the informativeness (and, indeed, the well-posedness) of
the statement that a giraffe is more similar to a banana than to a beetle is questionable.

The above considerations suggest that the locality constraint per se does not preclude basing
representation upon the principle of conformality of the distal-to-proximal mapping M. The issue
at hand is, therefore, practical: for a randomly chosen point in the distal shape space, how large
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is the domain over which the distortion coefficient ¢ of the mapping M is likely to be close enough
to 17 Theoretical analysis and computer simulations (Duvdevani-Bar and Edelman, 1995), as well
as psychophysical data (Edelman, 1995b; Cutzu and Edelman, 1995), suggest that the answer to
that question is, probably, “large enough.”

L—recognition classification

Figure 8: The new Pandemonium. The computational properties of the proposed framework for
object categorization are discussed in section 5.1). Note that, unlike in the original Pandemonium,
here the outcome depends on the distribution of responses of the “cognitive demons” (recognition
modules tuned to individual “reference” objects), and not merely on the identity of the demon
which responds the strongest.

5 Summary

5.1 The new Pandemonium

A convenient framework for summarizing the view of RF's as a universal building block of perception
is provided by Selfridge’s Pandemonium. The original Pandemonium, however, has to be modified
on all three of its levels. First, cooperating feature demons with overlapping RFs must be introduced
to support hyperacuity (section 2.1). Second, probabilistic cognitive demons are required that
would compute a sparse distributed feature code called for by Barlow (section 2). Third, the
winner-take-all decision demon must be replaced by a multidimensional mechanism that would
take into consideration the relative response levels of the cognitive demons, and not merely signify
the strongest-responding one (section 4).
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Figure 9: Basic and subordinate-level categorization. According to the proposal outlined in sec-
tion 5.1, the category of the stimulus is signalled by the identity of the recognizers (shape-space
RF's) that respond above threshold, while its exact characterization is encoded in the distribution
of responses of the active recognizers.

The reliance on a distributed population response — a chorus of individual-object recognizers
(Edelman, 1995¢) — is of utmost importance in the proposed framework. As noted in (Mumford,
1994), population coding endows the representational space with geometrical structure and per-
mits the definition of distances among representational tokens. If these distances reflect appropriate
objective contrasts between distal objects, the notion of representation acquires a concrete math-
ematical meaning. According to the results of section 4, this calls for a smooth regular mapping
between the shape space and the representation space, of the kind provided by the RBF recognition
module illustrated in Figure 4.

Consider a bank of k recognizers, each tuned to a particular point in the distal space (its
optimal stimulus), with the response falling off gradually and monotonically with distance from
the optimal point (note that this effectively defines a graded-profile RF in the shape space; cf.
(Sakai et al., 1994)). Such a system (see Figure 8) realizes a map M : R® — R* which is smooth
and regular, and can, therefore, serve as a substrate for veridical representation of the original
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space R" (any diffeomorphism restricted to a compact subset of its domain is quasiconformal;
Zorich 1992, p.133). At the more abstract levels of categorization, when the profile of the shape-
space RF can no longer be assumed monotonic, a hybrid approach illustrated in Figure 9 may
be adopted. According to this approach, the category of the stimulus is signalled by the identity
of the recognizers that respond above threshold, while its exact characterization is encoded in
the distribution of responses of the active recognizers. This hypothesis may be compared to the
recent finding of columnar representation of shape in the IT cortex in monkeys (Fujita et al.,
1992; Tanaka, 1992). Specifically, the general category and the exact description of the stimulus
shape may correspond, respectively, to the tangential distribution of activity across a bundle of IT
columns tuned to a variety of “reference” shapes, and to the pattern of activation within each of
the responding columns (cf. Figure 9).

5.2 Conclusion

Theories of representation frequently assume that there is something special about the world, or
the brain, or both, which allows the latter to harbor representations of the former. Representation
by second-order isomorphism, and its proposed implementation in a system of RFs, constitutes
an attempt to cast this intuition into computationally precise terms. A precursor of this idea
can be found in the works of John Locke (1690), whose theory of representation by covariation
(in his words, “conformity” between the world and the representation) remains influential to the
present day (Cummins, 1989). In sensory physiology, the notion of functional units selectively
and reliably responsive to external stimuli (that is, units whose output covaries with the sensory
input in a well-defined and predictable manner) has found a wide acceptance in the form of the
feature detector doctrine, which is intimately linked to the concept of receptive field. Although
many issues concerning computation with RFs remain unresolved, the present partial survey of their
computational role in vision suggests that the unreasonable effectiveness of living perceptual systems
(paraphrasing E. Wigner, 1960) stems from a peculiar match between statistical and parametric
characterizations of visual objects, and properties of visual receptive fields.
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