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Abstract

Understanding the perception of all but the most impoverished and artificial scenes presents a differ-
ent (and likely far greater) kind of challenge than understanding face recognition, reading, or identifica-
tion (or even categorization) of standalone objects. This article surveys central issues in the interpretation
of structured objects and scenes (starting with basics, such as the meaning of seeing), and outlines a the-
oretical approach to this formidable task, motivated by some recent developments in neuroscience and
neurophilosophy.

1 Vision as scene description

What does it mean, to see? The plain man’s answer (and Aristotle’s, too) would be, to know what is where
by looking. In other words, vision is the process of discovering from images what is present in the world,
and where it is. A common notion of vision, consistent with this excerpt from the first paragraph of David
Marr’s book [1], may be likened to the predicament of a person with a flashlight placed in a pitch-dark
room full of unfamiliar furniture. One would hope that, by swinging the beam around, the observer may
be able to recognize the objects present in the room (a cat here, an aquarium there, etc.) — a task that no
longer appears as daunting as it used to, if only because its computational nature is now better understood
[2, 3]. There is, however, more to high-level vision than recognizing and mentally labeling one object after
another, just as there is more to our visual world than a list of objects in the field of view that can be ticked
off. Unless viewed in darkness with the aid of a searchlight, objects present themselves to us embedded in
scenes, combined and recombined in a highly variable, yet structured, manner.

It is tempting to draw a parallel between the structure of composite objects and scenes and that of natural
languages. However, this analogy, which motivates “structural description” theories of object representation
[4], leads the quest for a comprehensive theory of visual representation to a dilemma. On the one hand, the
need to deal explicitly with structure does not arise in recognition tasks [5, 6]; also, a scene that affords a
satisfactory description by a noun-phrase observational sentence (“lo, a tabby cat”) fails to give the human
language system a run for its money. On the other hand, our linguistic apparatus falls short of capturing
the visual world in all its richness, and more so the more complex the scene (cf. Figure 1). Thus, it seems
that a theory of vision patterned on the prevalent theories of language would be more structural than what is
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strictly necessary for object recognition, yet not structural enough (or perhaps structured in a wrong manner)
to account for scene perception. A number of arguments supporting this claim are offered below, followed
by a tentative resolution of the conundrum arising from the need to represent structure.

Figure 1 here.

2 Problems arising from equating vision with description

To guide the study of biological vision, and to facilitate the development of computer vision systems that
see rather than do target acquisition, it is important to identify the problematic aspects of description in
general, and structural descriptions in particular, considered as the ultimate goal of vision. These are: (1)
the inherent ineffability of pictures, (2) the questionable ontological status of “objects” of which scenes
are composed, (3) the impossibility of segmenting images in a consistent and principled manner, (4) the
potential involvement of the entire cognitive system of the perceiver in interpreting image fragments both
small and large, and (5) the need for a homunculus implied in postulating a language-like format for the
ultimate stage of visual representation.

Ineffability. The inability of language to put certain things into words has been pointed out by philoso-
phers and semioticians, particularly those of Kantian predisposition [7]. In applying language to vision, it
is customary to distinguish between interpretation (a statement of the meaning of the scene) and description
(“a composition bringing the subject clearly before the eyes”). These two modes of verbalization of images
are equally problematic: the disagreement over the painting reproduced in Figure 1, left, for example, ranges
from general interpretation to specific details. In view of this indeterminacy, one obviously cannot expect a
one-to-one correspondence between the image and any of its verbal descriptions — a realization that does
not bode well for an entire class of theories of high-level vision [8, 9, 10, 11, 4, 12].

Why are images ineffable? The quantitative aspect of ineffability can be formalized: any reasonable-
length description falls short of conveying all the information present in the image [13]; a picture is worth
much more than a thousand words. A different, conceptual kind of ineffability stems from a mismatch
between category boundaries (including those pertaining to spatial categories) available in natural languages
and the extremely fine-grained categories discernible in principle in an image. In a sense, we do not have
enough names (nor sentences, if these are to be of manageable complexity) for all the things, thingies and
thingikins that can be found in an image.

Ontology. An old and still popular solution to this overabundance of possible objects is to legislate an
ontology (a list of everything that is), and to settle for seeing only certain things: those that match your
schemata or concepts (a Kantian remedy, echoed in [7]). Notice how the notion that to see is “to know what
is where by looking” [1] presupposes the existence “out there” of clearly delineated entities, which merely
need to be detected and labeled; without such an assumption, the “what” in Marr’s maxim is ill-defined.
This, however, is a rather short-sighted ontological strategy, and it leads to the poor cognitive strategy of
only looking for “legitimate” objects that are members of some a priori sanctioned set.

Segmentation. The conceptual basis for forming the description of an image in terms of objects present
in it is compromised not only by the debatable ontological status of various objects, but also by the inde-
terminacies lurking behind the decision to which object should a given pixel be attributed. As before, two
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aspects of the problem can be discerned. The first is the technical issue of image segmentation, which is
known in computer vision to be an extremely challenging task [14]. A careful consideration of the second,
conceptual aspect of segmentation makes one wish that technicalities, complicated as they may be, were the
only challenge to be met. An insight into the concept of image segmentation can be gleaned from drawing
an analogy between the implied need to attribute a discrete label to each pixel and the process of making a
jigsaw puzzle out of an image. This latter approach calls for a “gold standard” defining, for each image, the
canonical form of the puzzle. Alas, all attempts to do so quickly founder, as illustrated in Figure 1 on the
example of Giorgione’s well-known painting, the Tempest [15].

Holism. An important source of difficulties that arise in an attempt to group pixels together is the dis-
tributed – indeed, holistic – nature of the information that can be potentially relevant to grouping decisions.
The ultimate interpretation of an image fragment more often than not depends on its context, if not on the
entire image (note that experimental studies of scene perception, such as [16, 17, 18, 19], tend to focus
on the recognition of independently defined target objects embedded in scenes, thereby skirting the really
problematic issue raised here). Because of that, a straightforward extension of object recognition techniques
to scene understanding is not likely to work: it may be possible to identify an object singled out by the
“searchlight” of a model-based recognition process as a particular member of a small list of alternatives, but
not as a thing in itself in an unconstrained situation. For example, the window awning on the tower immedi-
ately behind the bridge in the Tempest (Figure 1, left) is reduced to a meaningless collection of pixels if its
context is excluded.

Homunculus. Suppose all the problems discussed so far are solved and the vision module of a cognitive
system comes up with an annotation for the observed scene that is concise, comprehensive, and unique in
a principled manner. The idea of such a representation is popular both in science fiction (Figure 2) and in
computer vision (an illustration of the goals of the “image interpretation” system proposed in [12] looks very
much like Figure 1, right). Setting aside the feasibility concerns, one may ask, what would an annotated
image be good for? Not much – unless the rest of the system recruits a homunculus to deal with the natural
language annotations. Merely leaving language out of the picture would not help: the notion that the goal of
vision should be the recovery of the full 3D structure of the scene leads to a conceptually related problem.
In the first case, a homunculus is needed to read the annotation; in the second case, to see the reconstructed
scene.

Figure 2 here.

3 Saving vision: a synthesis

The notion of making sense of a scene requires an elaboration that would spell out a computationally viable
approach to scene representation while avoiding the various conceptual traps listed above. Some of the
possible ingredients of such an approach are discussed next.

3.1 Similarity-space ontology

Those researchers who recognize the need for setting the ontology straight realize the challenge inherent in
this project: “That you come to glean this stable ontology, of particulars that instantiate types, of particulars
that occupy stable places in the world, is an astounding capacity. [...] To conceive of types and tokens, places
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and objects as existing at all, given our sensory access to the world, is a fantastically difficult task.” [20].
To address this task, it is useful to distinguish between the “what” and the “where” aspects of the sensory
input, and to let the latter serve as the scaffolding holding the would-be objects in place. Both object and
place cues can be coarse-coded [21]. Indeed, the most basic tenet of sensory physiology states that any
such cues are coarse-coded: a neuron that responds to some shape (no matter how simple or complex) at
some location will also respond (perhaps less vigorously) to similar shapes at similar locations (for the most
relevant references, see Figure 3).

In one implemented representation scheme based on these principles [3], “what” entities (the would-be
objects) are coded by their similarities to an ensemble of familiar reference shapes [5]. At the same time,
the “where” aspects of the object/scene structure are represented by the spatial distribution of the receptive
fields of the ensemble members [22, 23]. Functionally, this amounts to the use of visual space as its own
representation [24]; think of a corkboard to which the various reference-shape similarity vectors are pinned
[23].

A crucial property of this scheme, which is essentially a multidimensional similarity space (Figure 3,
left), is its ontological neutrality both with respect to shape (a much larger variety of shapes can be repre-
sented, without a commitment to an alphabet of generic parts, than the few objects that are actually “stored”),
and with respect to location (any place can be encoded, although only a few need to be represented explicitly,
the rest can be interpolated; this is done without a commitment to a particular spatial resolution). Proba-
bilistic considerations such as the Minimum Description Length principle can be used to determine what
reference shapes and what place holders are worth representing explicitly [23]; recent psychophysical find-
ings suggest that probabilistic principles are indeed employed by subjects in the unsupervised learning of
visual structure [25, 26].

Figure 3 here.

3.2 Attention, on-demand processing, and the binding problem

The “what+where” similarity space offers a solution to the basic problem of scene (or object structure) rep-
resentation — “what is where” — while avoiding the problematic early commitment to a rigid designation
of the identity of an object and to its crisp segmentation from the background. Instead of asking “to which
object does this pixel (actually, visual direction) belong?” it is more productive, and more consistent with
the principle of Least Commitment [1], to characterize it by the multidimensional vector of shape (and tex-
ture, and color) information obtained by fixing the values of the space dimensions. If and when a complex
structure-related decision is required for an attended visual direction, it can be made on the basis of the rich
distributed representation (the dependence of the visual processing of structural information on attention is
well-documented [27, 28, 29, 30]; see [31] for review).

Keeping the special status of “space” space (as opposed to shape, color and texture spaces) in this
representation scheme has a surprising beneficial side effect: binding properties to objects. To see how this
important variety of the binding problem [32] is resolved, consider a classical example: a scene consisting
of a red circle and a blue square. Confusion with the interpretation [blue circle; red square] is averted
by treating shape and color information as labels pertaining to specific locations, as in notes pinned to
a corkboard: red and circle here, blue and square there. Likewise, an upright human figure will not be
confused with a jumbled collection of body parts: the head is seen as above the torso, not because above is
an abstract two-slot frame binding together free-floating symbols for head and torso, but because the head
is here, the torso is there, and the former location happens to be above the latter in the visual field [22]. As
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observed by Clark [33], pp.160-162, in such examples color and shape assume the role of predicates, and
locations – of proper names.

If a perceptual task is defined in terms of quantities not directly available in the “what+where” repre-
sentation, attention will be needed to perform it. This is expected to happen for spatial relations that are
too complex (e.g., because they involve indirection, as in “do the earlobes in that face reach down below
the tip of the nose?”), or in various “illusory conjunction” situations [34], which, one may conjecture, occur
because the full layout of the scene is not normally committed to memory [24, 35]. Unlike in Treisman’s
Feature Integration Theory [34], however, no attention-controlled master map is needed, because features are
associated with locations by default; two features pertaining to the same object are thereby bound together
(albeit in a distributed fashion), simply because they are about the same place [33].

3.3 The Zen of distributed representation

When coupled with the identity theory of mind (the hypothesis that mind is neural activity [36]), the view
of perception outlined here offers a new take on qualia, the classical ineffable entity in philosophy ([37];
see Box: Qualia). The relationship between multidimensional distributed representations and qualia is best
expressed by J. J. C. Smart, one of the originators of the identity theory:

“Certainly walking in a forest, seeing the blue of the sky, the green of the trees, the red of the
track, one may find it hard to believe that our qualia are merely points in a multidimensional
similarity space. But perhaps that is what it is like (to use a phrase that can be distrusted) to be
aware of a point in a multidimensional similarity space.” [36]

This intriguing observation alludes to — and turns on its head — Nagel’s famous argument for the privacy
of phenomenal quality of experience (see Box: Qualia). Whereas the eliminative stance (such as Dennett’s
[38]) would do away with qualia altogether, this view offers a reductive [39] explanation that is appealing on
grounds both psychophysical [40] and neurobiological [41]. At the very least, these links between cognitive
sciences and the philosophy of mind motivate a renewed scrutiny of the computational, psychophysical,
neurobiological – and phenomenological – aspects of distributed representations. The emerging cognitively
plausible version of the identity theory also presents in a new light Aristotle’s comment on vision (offered
parenthetically in a discussion of actualities and potencies in Book IX, part 8 of Metaphysics): In sight the
ultimate thing is seeing, and no other product besides this results from sight.
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QUALIA
The term ‘qualia’ (singular ‘quale’) refers to the introspectively accessible, phenomenal aspects of
our mental lives [42]. A typical example is the redness of a tomato: all the knowledge of the spectral
composition of the light reflected by the tomato does not seem to convey the subjective quality of
the visual experience it evokes.
One of the more famous arguments for the ineffability of qualia appeared in Thomas Nagel’s paper
What is it like to be a bat?, which links subjective experience with consciousness: “. . . fundamentally
an organism has conscious mental states if and only if there is something that it is to be that organism
– something it is like for the organism. We may call this the subjective character of experience.” [43].
For an illuminating deconstruction of the like-to-be-ness argument for ineffable qualia, see [33] (esp.
p.129, where the central role of psychophysics in the scientific study of qualia is affirmed).
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OUTSTANDING ISSUES

1. How should the apparent unity of perceptual experience shape our theories of representation?
The idea that phenomenal unity (and “binding”) requires convergence of all the relevant in-
formation onto a single neuron (a simplistic notion: why should single neurons possess tran-
scendental unifying powers?) has been now abandoned in favor of ensemble response models
involving synchrony or phase-locking [44]. This, however, merely postpones the need for
convergence; otherwise, how is the synchrony to be detected (or, indeed, maintained)? In a
truly viable theory, representations would have to remain distributed, yet causally effective
(as noted by Teller [45]).

2. Is a new phenomenology, which would completely eschew transcendentalism in favor of
computational principles, possible? Is it already here? (cf. [33], p.129: “There is no need for
a new discipline of objective phenomenology. We already have such a discipline. It is called
psychophysics.”) Some of the current attempts to naturalize phenomenology [46] seem to put
it onto a convergence course with cognitive science, but much more work in that direction is
needed.
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GLOSSARY

Binding problem. Any componential representation would seem to be confronted with the need
to bind together the components into a unified whole, because our perception of objects, even of
structured ones, appears to be unitary and seamless. Binding has been promoted by von der Malsburg
[47, 44] as a major problem in distributed information processing. In a comprehensive discussion
of its many aspects, Treisman [32] points out that “Objects and locations appear to be separately
coded in ventral and dorsal pathways, respectively, raising what may be the most basic binding
problem: linking ‘what’ to ‘where’.” A distributed representation in which “what” and “where”
cues are coded jointly has been proposed recently as a remedy for such concerns (it is now known
that the separation between “what” and “where” information in primate vision is far from absolute;
see legend to Figure 3).

Meaning holism. This philosophical stance postulates the interrelatedness of meanings within
the human cognitive system: “Our statements about the external world face the tribunal of sense
experience not individually but only as a corporate body.” [48], p.41. When applied to scene per-
ception, it translates into the claim that the meaning of virtually every portion of the visual field may
depend on that of virtually every other portion. For a pessimistic view of meaning holism as a major
stumbling block for cognitive science, see [49], p.28.

Minimum Description Length. A general information-theoretic principle [50], related to Oc-
cam’s Razor, that can be used to guide unsupervised learning of cognitive representations. Accord-
ing to the MDL principle, the entities to be used in describing a collection of structured data (e.g.,
visual scenes) should be chosen so as to minimize the joint cost of (1) representing a set of primitives
and (2) representing the data in terms of those primitives. There are indications that human subjects
use related considerations in unsupervised learning of structured visual stimuli [25, 26].

Structural descriptions. On this theory of vision, an object is represented as a collection of
generic parts (chosen from a small set common to all objects), along with their spatial relationships
[4, 51], much as utterances are composed of simpler, generic building blocks – phonemes. On
a closer inspection, this analogy actually supports my scepticism about the discrete, mereological
(“calculus of parts”) view of cognitive representations (e.g., because coarticulation [52] blurs the
boundaries between phonemes uttered in succession, which is the only way they ever appear in
normal speech).
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Figure 1: On scenes and their descriptions. Left: A visual scene (Giorgione’s Tempest) overlaid with a
description consisting of a set of spatially localized annotations. An unspoiled version of this painting can
be viewed at http://www.artchive.com/artchive/G/giorgione/tempest.jpg.html. Right: The annotation on its
own, with the image removed, falls far short of one’s phenomenal experience of the scene. Worse, even
deciding how many objects are there in the image (something we are conditioned to expect, say, from a
computer vision system) is a formulation that is fraught with conceptual difficulties. Here is how Elkins
([15], p.135) describes the pitfalls inherent in viewing images as jigsaw puzzles: “In any version of the
jigsaw-puzzle metaphor, a fundamental problem is deciding the number of pieces in the puzzle. Settis [the
author of an influential commentary on the Tempest] makes a point of claiming that his solution is complete,
since it provides an explanation for every element of the painting. But it’s open to question how many
elements there are, and what counts as a piece. ... Since Settis’ book appeared in 1978 there have been at
least twenty more interpretations, and several of them name different puzzle pieces.” Indeed, expanding the
annotation into a full-blown narrative does not help: verbal descriptions are likely to vary widely between
narrators without yet doing justice to the picture they purport to describe. Is the subject of the Tempest
the life of Adam and Eve outside the Garden of Eden? the suckling of Romulus by Acca Larentia? the
defense of Padua against the Hapsburgs by the Venetians in 1509? Elkins (the source of this partial list
of interpretations [15]) ends up calling this painting “Giorgione’s ‘meaningless’ Tempest.” Apparently, art
historians find it as difficult to agree on the description of even the most innocuous landscape painting as the
rest of us on a Jackson Pollock.
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Figure 2: A screen shot from one of the Terminator movies, showing the output of the robot’s visual module,
presented, presumably, to the homunculus in the internal command and control post. The annotations are
a mixture of English and abbreviations made to resemble computer assembly language. The concept of
representation implied by this picture is deeply problematic. If the robot recognizes the motorcycle and
this recognition can set off a chain of actions (in a manner suggested, for example, in Figure 3, right) that
would result in riding it, the annotation is superfluous. If, on the other hand, the robot’s representation of
the motorcycle consists of the annotation itself, it is not clear how can the action of riding be guided: it is
the shape of the saddle, not the word “saddle,” that affords riding (in J. J. Gibson’s sense).
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Figure 3: Left: The functional principle behind the multiple maps approach to scene representation. In this
illustration, two “where” dimensions (corresponding to the image location), and two “what” dimensions
(similarity to bridge and similarity to person) are shown. For an implementation of this approach, re-
lying on the recently described “what+where” cells [53, 54] and the MDL principle, see [23]. Right: The
distributed nature of this representation is unsettling to some, as indicated by this excerpt from Teller [45]:
“If two or more neurons are to act jointly to determine a perceptual state, must their outputs necessarily con-
verge upon a successive neuron whose state uniquely determines the perceptual state? [...] It is a ‘dilemma’
in the sense that both answers seem unacceptable. Requiring such convergence would require lots of neu-
rons whose only job would be to register combinations of activity among other neurons. But without such
convergence it is difficult to see how some joint effects could be produced.” [45], p.1244. Similar concerns
motivate the development of models of binding that rely on synchronous neural activity [44]. The neces-
sity of these extra postulates should be examined in the light of distributed solutions to the “joint effects”
dilemma, such as this “crossbar” association network [55, 56, 57], which offers a means for the constituents
of a distributed representation to exercise joint action, provided that the dimensionality of the representation
is manageable [3], p.223.
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