[1]
L. F. Abbott, E. T. Rolls, and M. J. Tovee. Representational capacity of face coding in monkeys. Cerebral Cortex, 6:498-505, 1996.

[2]
A. Abbott and N. Ahuja. Surface reconstruction by dynamic integration of focus, camera vergence and stereo. In Proceedings of the 2nd International Conference on Computer Vision, pages 532-545, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[3]
M. Abeles. Role of cortical neuron: integrator or coincidence detector? Israel J. Med. Sci., 18:83-92, 1982.

[4]
Y. S. Abu-Mostafa and D. Psaltis. Optical neural computing. Scientific American, 256:66-73, 1987.

[5]
E. H. Adelson. Rigid objects that appear highly non-rigid. Invest. Ophthalmol. Vis. Sci. Suppl., 26:56, 1985.

[6]
Y. Adini, Y. Moses, and S. Ullman. Face recognition: the problem of compensating for changes in illumination direction. CS-TR 93-21, Weizmann Institute of Science, 1993.

[7]
Y. Adini, Y. Moses, , and S. Ullman. Face recognition: the problem of compensating for illumination changes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997. in press.

[8]
D. W. Aha, D. Kibler, and M. A. Albert. Instance-based learning algorithms. Machine Learning, 6:37-66, 1991.

[9]
M. Ahissar and S. Hochstein. Task difficulty and the specificity of perceptual learning. Nature, 387:401-406, 1997.

[10]
V. Ajjanagadde and L. Shastri. Rules and variables in neural nets. Neural Computation, 3:121-134, 1991.

[11]
A. Albert. Regression and the Moore-Penrose pseudoinverse. Academic Press, New York, 1972.

[12]
T. D. Albright. Motion perception and the mind-body problem. Current Biology, 1:391-393, 1991.

[13]
J. Y. Aloimonos, I. Weiss, and A. Bandopadhay. Active vision. International Journal of Computer Vision, 2:333-356, 1988.

[14]
J. Y. Aloimonos and D. Shulman. Integration of visual modules: an extension of the Marr paradigm. Academic Press, Boston, 1989.

[15]
J. Y. Aloimonos and M. J. Swain. Shape from texture. In Proceedings IJCAI, pages 926-931, 1985.

[16]
J. Y. Aloimonos. Unification and integration of visual modules. In Proceedings Image Understanding Workshop, pages 507-551, San Mateo, CA, 1989. Morgan Kaufmann.

[17]
J. Y. Aloimonos. Purposive and qualitative vision. In Proc. AAAI-90 Workshop on Qualitative Vision, pages 1-5, San Mateo, CA, 1990. Morgan Kaufmann.

[18]
I. Alter and E. L. Schwartz. Psychophysical studies of shape with Fourier descriptor stimuli. Perception, 17:191-202, 1988.

[19]
R. A. Altes. Ubiquity of hyperacuity. J. Acoust. Soc. Am., 85:943-952, 1988.

[20]
S. Amari and M. Maruyama. A theory on the determination of 3D motion and 3D structure from features. Spatial Vision, 2:151-168, 1987.

[21]
S. Amari. Invariant structures of signal and feature spaces in pattern recognition problems. RAAG Memoirs, 4:553-566, 1968.

[22]
S. Amari. Feature spaces which admit and detect invariant signal transformations. In Proc. 4th Intl. Conf. Pattern Recognition, pages 452-456, Tokyo, 1978.

[23]
J. Ambros-Ingerson, R. Granger, and G. Lynch. Simulation of paleocortex performs hierarchical clustering. Science, 247:1344-1348, March 1990.

[24]
A. Ames. Visual perception and the rotating trapezoid window. Psychological Monographs, 65(7), 1951.

[25]
R. A. Andersen, R. M. Bracewell, S. Barash, J. W. Gnadt, and L. Fogassi. Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of Macaque. J. Neurosci, 10:1176-1196, 1990.

[26]
C. H. Anderson and D. C. Van Essen. Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proceedings of the National Academy of Science, 84:6297-6301, 1987.

[27]
C. Ankrum and J. Palmer. Memory for objects and parts. Perception and Psychophysics, 50:141-156, 1991.

[28]
M. A. Arbib. Feature detectors, visuomotor coordination, and efferent control. In D. Albrecht, editor, Recognition of Pattern and Form, volume 44, pages 100-110. Springer, Berlin, 1979.

[29]
F. Gregory Ashby and Nancy A. Perrin. Toward a unified theory of similarity and recognition. Psychological Review, 95(1):124-150, 1988.

[30]
F. G. Ashby, editor. Multidimensional models of perception and cognition. Erlbaum, Hillsdale, NJ, 1992.

[31]
J. J. Atick, P. A. Griffin, and A. N. Redlich. Statistical approach to shape from shading: reconstruction of three-dimensional face surfaces from single two-dimensional images. Neural Computation, 8:1321-1340, 1996.

[32]
J. J. Atick, P. A. Griffin, and A. N. Redlich. The vocabulary of shape: principal shapes for probing perception and neural response. Network, 7:1-5, 1996.

[33]
J. J. Atick and A. N. Redlich. What does the retina know about natural scenes? Neural Computation, 4:196-210, 1992.

[34]
J. J. Atick. Could information theory provide an ecological theory of sensory processing? Network, 3:213-251, 1992.

[35]
C. Atkeson and J. Hollerbach. Kinematic features of unrestrained vertical arm movements. J. Neurosci., 5:2318-2330, 1985.

[36]
R. C. Atkinson and R. M. Shiffrin. Human memory: a proposed system and its control processes. In K. W. Spence, editor, Psychology of learning and motivation: advances in research and theory, volume 2, pages 89-195. Academic Press, New York, 1968.

[37]
F. Attneave. Triangles as ambiguous figures. Am. J. Physiol., 81:447-453, ??

[38]
L. Auslander and R. E. MacKenzie. Introduction to differentiable manifolds. McGraw-Hill, 1963.

[39]
N. Ayache and O. D. Faugeras. Hyper: a new approach for the recognition and positioning of two-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(1):44-54, 1986.

[40]
R. Bajcsy and L. Lieberman. Texture gradient as a depth cue. Computer Graphics and Image Processing, 5:52-67, 1976.

[41]
R. Bajcsy. Active perception. Proc. IEEE, 76(8):996-1005, August 1988. special issue on Computer Vision.

[42]
P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition. Neural Computation, 5:402-418, 1993.

[43]
P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2:53-58, 1989.

[44]
K. Ball and R. Sekuler. Direction-specific improvement in motion discrimination. Vision Research, 27:953-965, 1987.

[45]
D. H. Ballard, R. C. Nelson, and B. Yamauchi. Animate vision. Optic News, 15:9-25, 1989.

[46]
D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[47]
D. H. Ballard and L. Hartman. Task frames: primitives for sensory-motor coordination. Computer Vision, Graphics, and Image Processing, 36:274-297, 1986.

[48]
D. H. Ballard and A. Ozcandarli. Eye fixation and early vision: kinetic depth. In Proceedings of the 2nd International Conference on Computer Vision, pages 524-531, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[49]
D. H. Ballard. Cortical connections and parallel processing: structure and function. Behavioral and Brain Sciences, 9:67-120, 1986.

[50]
D. H. Ballard. Interpolation coding: a representation for numbers in neural models. Biological Cybernetics, 57:389-402, 1987.

[51]
D. H. Ballard. Animate vision. Artificial Intelligence, 48:57-86, 1991.

[52]
S. Barash, R. M. Bracewell, L. Fogassi, J. W. Gnadt, and R. A. Andersen. Saccade-related activity in the lateral intraparietal area ii. Spatial properties. J. Neurophysiology, 66:1109-1124, 1991.

[53]
M. Barchilon Ben-Av, D. Sagi, and J. Braun. Visual attention and perceptual grouping. Perception and Psychophysics, 52:277-294, 1992.

[54]
H. B. Barlow and R. W. Levick. The mechanism of directional selectivity in the rabbit's retina. J. Physiol., 173:477-504, 1965.

[55]
H. B. Barlow and J. D. Mollon, editors. The senses. Cambridge University Press, Cambridge, UK, 1982.

[56]
H. B. Barlow and B. C. Reeves. The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19:783-793, 1979.

[57]
H. B. Barlow. Sensory mechanisms, the reduction of redundancy, and intelligence. In The mechanisation of thought processes, pages 535-539. H.M.S.O., London, 1959.

[58]
H. B. Barlow. Single units and sensation: a neuron doctrine for perceptual psychology. Perception, 1:371-394, 1972.

[59]
H. B. Barlow. The past, present and future of feature detectors. In D. Albrecht, editor, Recognition of Pattern and Form, volume 44 of Lecture Notes in Biomathematics, pages 4-32. Springer, Berlin, 1979.

[60]
H. B. Barlow. Reconstructing the visual image in space and time. Nature, 279:189-190, 1979.

[61]
H. B. Barlow. The absolute efficiency of perceptual decisions. Proceedings of the Royal Society of London B, 290:71-82, 1980.

[62]
H. B. Barlow. Cerebral cortex as model builder. In D. Rose and V. G. Dobson, editors, Models of the visual cortex, pages 37-46. Wiley, New York, 1985.

[63]
H. B. Barlow. The role of single neurons in the psychology of perception. Quart. J. Exp. Psychol., 37A:121-145, 1985.

[64]
H. B. Barlow. Conditions for versatile learning, Helmholtz's unconscious inference, and the task of perception. Vision Research, 30:1561-1571, 1990.

[65]
H. B. Barlow. What is the computational goal of the neocortex? In C. Koch and J. L. Davis, editors, Large-scale neuronal theories of the brain, chapter 1, pages 1-22. MIT Press, Cambridge, MA, 1994.

[66]
H. B. Barlow. Adaptation by hyperpolarization. Science, 276:913-914, 1997.

[67]
S. T. Barnard and M. A. Fischler. Computational stereo. ACM Comput. Surveys, 143:553-572, 1982.

[68]
H. G. Barrow and J. M. Tenenbaum. Recovering intrinsic scene characteristics from images. In A. R. Hanson and E. M. Riseman, editors, Computer Vision Systems, pages 3-26. Academic Press, New York, NY, 1978.

[69]
H. G. Barrow and J. M. Tenenbaum. Computational vision. Proc. IEEE, 69:572-595, 1981.

[70]
H. G. Barrow and J. M. Tenenbaum. Interpreting line drawings as three-dimensional surfaces. Artificial Intelligence, 17:75-116, 1981.

[71]
H. G. Barrow and J. M. Tenenbaum. Retrospective on ``Interpreting line drawings as three-dimensional surfaces''. Artificial Intelligence, 59:71-80, 1993.

[72]
L. W. Barsalou. The instability of graded structure: implications for the nature of concepts. In U. Neisser, editor, Concepts and conceptual development, pages 101-140. Cambridge Univ. Press, 1987.

[73]
F. C. Bartlett. Remembering: An Experimental and Social Study. Cambridge University Press, Cambridge, 1932.

[74]
A. Barto. From chemotaxis to cooperativity: abstract exercises in neuronal learning strategies. In R. Durbin, C. Miall, and G. Mitchison, editors, The computing neuron, pages 73-98. Addison Wesley, New York, NY, 1989.

[75]
R. Basri and D. W. Jacobs. Recognition using region correspondences. International Journal of Computer Vision, 21, 1997. in press.

[76]
R. Basri and E. Rivlin. Localization and homing using combinations of model views. Artificial Intelligence, 1995. in press.

[77]
R. Basri and S. Ullman. The alignment of objects with smooth surfaces. In Proceedings of the 2nd International Conference on Computer Vision, pages 482-488, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[78]
R. Basri and S. Ullman. Recognition by linear combinations of models. Technical report, The Weizmann Institute of Science, 1989.

[79]
R. Basri. Recognition by prototypes. A.I. Memo No. 1391, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, December 1992. Intl. Journal of Computer Vision, in press.

[80]
R. Basri. Recognition by prototypes. International Journal of Computer Vision, 19(147-168), 1996.

[81]
E. B. Baum, J. Moody, and F. Wilczek. Internal representations for associative memory. Biological Cybernetics, 59:217-228, 1988.

[82]
J. Baxter. The canonical metric for vector quantization. NeuroCOLT NC-TR-95-047, University of London, 1995.

[83]
J. Baxter. Learning internal representations. In Proc. COLT'95, June 1995.

[84]
J. Baxter. The canonical distortion measure for vector quantization and approximation. Unpublished manuscript, 1996.

[85]
R. Beals, D. H. Krantz, and A. Tversky. The foundations of multidimensional scaling. Psychological Review, 75:127-142, 1968.

[86]
J. Beck, K. Prazdny, and A. Rosenfeld. A theory of textural segmentation. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and Machine Vision, pages 1-38. Academic Press, New York, NY, 1983.

[87]
J. Beck, A. Sutter, and R. Ivry. Spatial frequency channels and perceptual grouping in texture segmentation. Computer Vision, Graphics, and Image Processing, 37:299-325, 1987.

[88]
J. Beck and S. Prazdny. Highlights and the perception of glossiness. Perception and Psychophysics, 30:407-410, 1981.

[89]
J. Beck. Surface Color Perception. Cornell University Press, Ithaca, NY, 1972.

[90]
J. Beck. Textural segmentation. In J. Beck, editor, Organization and representation in perception, chapter 15. Erlbaum, Hillsdale, NJ, 1982.

[91]
J. D. Becker and J. Krüger. Recognition of visual stimuli from multiple neuronal activity in monkey visual cortex. Biological Cybernetics, 74:287-298, 1996.

[92]
A. Beinglass and H. Wolfson. Articulated object recognition, or, how to generalize the Generalized Hough Transform. Institute of Computer Sciences TR 194/90, Tel Aviv University, 1990.

[93]
R. E. Bellman. Adaptive Control Processes. Princeton University Press, Princeton, NJ, 1961.

[94]
J. Ben-Arie. The probabilistic peaking effect of viewed angles and distances with application to 3D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:760-774, 1990.

[95]
A. Ben-Israel and T. N. E. Greville. Generalized inverses: theory and applications. Wiley, New York, 1974.

[96]
R. G. Bennett and G. Westheimer. The effect of training on visual alignment discrimination and grating resolution. Perception and Psychophysics, 49:541-546, 1991.

[97]
S. Bentin and L. B. Feldman. The contribution of morphological and semantic relatedness to repetition priming at short and long time lags: Evidence from hebrew. Q. Journal Exp. Psychol., 42A:693-711, 1990.

[98]
R. Bergevin and M. D. Levine. Part decomposition of objects from single view line drawings. Computer Vision, Graphics, and Image Processing: Image Understanding, 55:73-83, 1992.

[99]
G. Berkeley. A treatise concerning the principles of human knowledge. Oxford University Press, Oxford, 1710/1996.

[100]
G. S. Berns, J. D. Cohen, and M. A. Mintun. Brain regions responsive to novelty in the absence of awareness. Science, 276:1272-1276, 1997.

[101]
D. C. Berry. Implicit learning: twenty-five years on. a tutorial. In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 30, pages 755-781. MIT Press, 1994.

[102]
M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision. Proceedings of the IEEE, 76:869-889, 1988.

[103]
P. J. Besl and R. C. Jain. Invariant surface characteristics for 3D object recognition in range images. Computer Vision, Graphics, and Image Processing, 33:33-80, 1986.

[104]
D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and synthesis. A.I. Memo No. 1431, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, November 1993.

[105]
D. Beymer and T. Poggio. Image representations for visual learning. Science, 272:1905-1909, 1996.

[106]
J. C. Bezdek. Fuzzy models for pattern recognition. IEEE Press, Washington, DC, 1992.

[107]
W. Bialek, F. Rieke, R. R. de Ruyter Van Steveninck, and D. Warland. Reading a neural code. Science, 252:1854-1857, 1991.

[108]
M. Bichsel and A. Pentland. Human face recognition and the face image set's topology. Computer Vision, Graphics, and Image Processing: Image Understanding, 59:254-261, 1994.

[109]
I. Biederman, J. C. Rabinowitz, A. L. Glass, and E. W. Stacy. On the information extracted from a glance at a scene. Journal of Exp. Psychol, 103:597-600, 1974.

[110]
I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz. Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14:143-177, 1982.

[111]
I. Biederman and E. E. Cooper. Evidence for complete translational and reflectional invariance in visual object priming. Perception, 20:585-593, 1991.

[112]
I. Biederman and P. C. Gerhardstein. Recognizing depth-rotated objects: evidence and conditions for 3D viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19:1162-1182, 1993.

[113]
I. Biederman and P. C. Gerhardstein. Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bülthoff. Journal of Experimental Psychology: Human Perception and Performance, 21:1506-1514, 1995.

[114]
I. Biederman and G. Ju. Surface versus edge-based determinants of visual recognition. Cognitive Psychology, 20:38-64, 1988.

[115]
I. Biederman and M. S. Shiffrar. Chicken sexing: an expert systems and experimental analysis of a difficult perceptual learning task. Journal of Experimental Psychology: Human Learning, Memory and Cognition, 13:640-645, 1987.

[116]
I. Biederman. Human image understanding: Recent research and a theory. Computer Vision, Graphics, and Image Processing, 32:29-73, 1985.

[117]
I. Biederman. Recognition by components: a theory of human image understanding. Psychol. Review, 94:115-147, 1987.

[118]
I. Biederman. Aspects and extensions of a theory of human image understanding. In Z. Pylyshyn, editor, Computational processes in human vision: an interdisciplinary perspective, pages 370-428. Ablex, Norwood, NJ, 1988.

[119]
E. Bienenstock, L. Cooper, and P. W. Munro. Theory for the development of neural selectivity: orientation specificity and binocular interaction in visual cortex. J. of Neuroscience, 2:32-48, 1982.

[120]
E. Bienenstock, S. Geman, and D. Potter. Compositionality, MDL priors, and object recognition. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Neural Information Processing Systems, volume 9. MIT Press, 1997.

[121]
E. Bienenstock and S. Geman. Compositionality in neural systems. In M. A. Arbib, editor, The handbook of brain theory and neural networks, pages 223-226. MIT Press, 1995.

[122]
E. Bienenstock. A model of neocortex. Network, 6:179-224, 1995.

[123]
J. Bigün. Recognition of local symmetries in gray value images by harmonic functions. In Proc. 9th Intl. Conf. on Patt. Recog., pages 345-347, 1988.

[124]
P. Billingsley. Probability and measure. Wiley, New York, 1979.

[125]
T. O. Binford. Visual perception by computer. In IEEE Conference on Systems and Control, Miami Beach, FL, December 1971.

[126]
T. O. Binford. Survey of model-based image analysis systems. International Journal of Robotics Research, 1:18-64, 1982.

[127]
P. O. Bishop, J. S. Coombs, and G. H. Henry. Receptive fields of simple cells in the cat striate cortex. J. Physiol. (London), 231:31-60, 1973.

[128]
S. J. Blackmore, G. Brelstaff, K. Nelson, and T. Troscianko. Is the richness of our visual world an illusion? Transsaccadic memory for complex scenes. Perception, 24:1075-1081, 1995.

[129]
A. Blake and G. Brelstaff. Geometry from specularities. In Proceedings of the 2nd International Conference on Computer Vision, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[130]
A. Blake and H. H. Bülthoff. Does the brain know the physics of specular reflection? Nature, 343:165-168, 1990.

[131]
A. Blake and A. Zisserman. Visual reconstruction. MIT Press, Cambridge, MA, 1988.

[132]
A. Blake. Specular stereo. In Proceedings IJCAI, pages 973-976, 1985.

[133]
J. F. Blinn. Models of light reflection for computer-synthesized pictures. In W. Richards, editor, Natural computation, pages 214-223. MIT Press, Cambridge, MA, 1988.

[134]
J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, and C.L. Wilson. Evaluation of pattern classifiers for fingerprint and OCR applications. Pattern Recognition, 27:485-501, 1994.

[135]
L. M. Blumenthal. Theory and applications of distance geometry. Clarendon Press, Oxford, 1953.

[136]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. In 18th annual ACM symposium on theory of computing, pages 273-282, 1986.

[137]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam's razor. Information Processing Letters, (24):377-380, 1987.

[138]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36:929-965, 1989.

[139]
A. Bobick and R. Bolles. The representation space paradigm of concurrent evolving object descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:146-156, 1992.

[140]
K. R. Boff, L. Kaufman, and J. P. Thomas, editors. Handbook of perception and human performance. Wiley, New York, 1986.

[141]
R. C. Bolles, P. Horaud, and M. J. Hannah. 3DPO: A three-dimensional part orientation system. In Proceedings IJCAI, pages 1116-1120, 1983.

[142]
R. C. Bolles, H. H. Baker, and M. J. Hannah. The JISCT stereo evaluation. In ARPA Image Understanding Workshop, pages 263-274, 1993.

[143]
R. C. Bolles and R. A. Cain. Recognizing and locating partially visible objects: the local feature focus method. International Journal of Robotics Research, 1:57-82, 1982.

[144]
R. C. Bolles and P. Horaud. 3DPO: A three-dimensional part orientation system. International Journal of Robotics Research, 5:3-26, 1986.

[145]
F. L. Bookstein. Morphometric tools for landmark data: geometry and biology. Cambridge Univ. Press, New York, 1991.

[146]
F. L. Bookstein. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58:313-365, 1996.

[147]
I. Borg and J. Lingoes. Multidimensional Similarity Structure Analysis. Springer, Berlin, 1987.

[148]
S. M. Botros and C. G. Atkeson. Generalization properties of radial basis functions. In D. Touretzky, editor, Neural Information Processing Systems, volume 3, pages 707-713, San Mateo, CA, 1991. Morgan Kaufmann.

[149]
J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math., 52:46-52, 1985.

[150]
R. M. Boynton. Color, hue, and wavelength. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume V, pages 301-347. Academic Press, New York, NY, 1978.

[151]
R. M. Boynton. Color in contour and object perception. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume VIII, pages 173-199. Academic Press, New York, NY, 1978.

[152]
O. J. Braddick. Low-level and high-level processes in apparent motion. Phil. Trans. R. Soc. London B, 290:137-151, 1980.

[153]
M. Brady and A. Yuille. An extremum principle for shape from contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:288-301, 1984.

[154]
M. J. Brady. Computational approaches to image understanding. ACM Computing Surveys, 14:3-71, 1982.

[155]
M. J. Brady. Criteria for representations of shape. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and machine vision, pages 39-84. Academic Press, New York, 1983.

[156]
V. Braitenberg. On the texture of brains. Springer-Verlag, New York, 1977.

[157]
J. Braun and D. Sagi. Texture-based tasks are little affected by second tasks requiring peripheral or central attentive fixation. Perception, 20:483-500, 1991.

[158]
M. Bravo and R. Blake. Preattentive vision and perceptual groups. Perception, 19:515-522, 1990.

[159]
C. Bregler and S. M. Omohundro. Nonlinear image interpolation using manifold learning. In D. S. Touretzky G. Tesauro and T. K. Leen, editors, Advances in Neural Information Processing 7, pages 973-980. MIT Press, 1995.

[160]
T. M. Breuel. Adaptive model base indexing. A.I. Memo No. 1008, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[161]
E. Bricolo, T. Poggio, and E. Logothetis. 3D object recognition: a model of view-tuned units. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8. MIT Press, Cambridge, MA, 1996.

[162]
E. Bricolo and H. H. Bülthoff. Translation-invariant features for object recognition. Perception, 21 (supp.2):59, 1992.

[163]
E. Bricolo and H. H. Bülthoff. Further evidence for viewer-centered representations. Perception, 22 (supp):105, 1993.

[164]
E. Bricolo and H. H. Bülthoff. Rotation, translation, size and illumination invariances in 3D object recognition. Invest. Ophthalm. Vis. Science, 34(4):1081, 1993.

[165]
J. C. Brigham. The influence of race on face recognition. In H. D. Ellis, M. A. Jeeves, and F. Newcombe, editors, Aspects of face processing, pages 170-177. Martinus Nijhoff, Dordrecht, 1986.

[166]
R. A. Brooks. Symbolic reasoning among 3D models and 2D images. Artificial Intelligence, 17:285-348, 1981.

[167]
R. Brooks. Model-based three-dimensional interpretations of two-dimensional images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5:140-149, 1983.

[168]
L. R. Brooks. Decentralized control of categorization: the role of prior processing episodes. In U. Neisser, editor, Concepts and conceptual development, pages 141-174. Cambridge Univ. Press, 1987.

[169]
R. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-160, 1991.

[170]
R. Brooks. Intelligence without representation. In Proc. of Foundations of AI Workshop, MIT, June 1987.

[171]
D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems, 2:321-355, 1988.

[172]
T. H. Brown, E. W. Kairiss, and C. L. Keenan. Hebbian synapses: biophysical mechanisms and algorithms. Ann. Rev. Neurosci., 13:475-511, 1990.

[173]
J. M. Brown, N. Weisstein, and J. G. May. Visual search for simple volumetric shapes. Perception and Psychophysics, 51:40-48, 1992.

[174]
D. R. Brown and M. H. Andrews. Visual form discrimination: multidimensional analysis. Perception and Psychophysics, 3:401-406, 1968.

[175]
V. Bruce, P. Healey, M. Burton, T. Doyle, A. Coombes, and A. Linney. Recognising facial surfaces. Perception, 20:755-770, 1991.

[176]
V. Bruce, E. Hanna, N. Dench, P. Healy, and M. Burton. The importance of `mass' in line drawings of faces. Applied Cognitive Psychology, 6:619-628, 1992.

[177]
V. Bruce, M. Burton, , E. Hanna, P. Healey, O. Mason, A. Coombes, R. Fright, and A. Linney. Sex discrimination: how do we tell the difference between male and female faces? Perception, 22:131-152, 1993.

[178]
V. Bruce, A. M. Burton, and N. Dench. What's distinctive about a distinctive face? Quarterly Journal of Experimental Psychology, 47A:119-141, 1994.

[179]
R. Brunelli and T. Poggio. HyperBF networks for real object recognition. In Proceedings IJCAI, pages 1278-1284, Sydney, Australia, 1991.

[180]
R. Brunelli and T. Poggio. Face recognition through geometrical features. In G. Sandini, editor, Proc. 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, volume 588, pages 792-800. Springer Verlag, 1992.

[181]
E. Brunswik. Perception and the representative design of psychological experiments. U. of California Press, Berkeley, CA, 1956.

[182]
A. Bruss and B. K. P. Horn. Passive navigation. Computer Vision, Graphics, and Image Processing, 21:3-20, 1983.

[183]
G. Buchsbaum and A. Gottschalk. Chromaticity coordinates of frequency-limited functions. Journal of the Optical Society of America, 1:885-887, 1984.

[184]
H. H. Bülthoff, K. G. Götz, and M. Herre. Recurrent inversion of visual orientation in the walking fly, drosophila melanogaster. J. Comp. Physiol., 148:471-481, 1982.

[185]
H. H. Bülthoff, J. J. Little, and T. Poggio. A parallel algorithm for real-time computation of motion. Nature, 337:549-553, 1989.

[186]
H. H. Bülthoff, S. Edelman, and E. Sklar. Mapping the generalization space in object recognition. Invest. Ophthalm. Vis. Science Suppl., 32(3):996, 1991.

[187]
H. H. Bülthoff, S. Edelman, and E. Sklar. Generalizing object recognition over 2d and 3d transformations. A. I. Memo, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1992. in preparation.

[188]
H. H. Bülthoff, S. Edelman, and M. J. Tarr. How are three-dimensional objects represented in the brain? Cerebral Cortex, 5:247-260, 1995.

[189]
H. H. Bülthoff and I. Bülthoff. Combining neuropharmacology and behavior to study movement detection in flies. Biological Cybernetics, 55:313-320, 1987.

[190]
H. H. Bülthoff and S. Edelman. The role of binocular stereo cues in visual object recognition. Perception, 19:340, 1990.

[191]
H. H. Bülthoff and S. Edelman. Psychophysical support for a 2-D view interpolation theory of object recognition. Proceedings of the National Academy of Science, 89:60-64, 1992.

[192]
H. H. Bülthoff and S. Edelman. Evaluating object recognition theories by computer graphics psychophysics. In T. Poggio and D. Glaser, editors, Exploring Brain Functions: Models in Neuroscience, pages 139-164. Wiley, New York, 1993. Proc. Dahlem Workshop.

[193]
H. H. Bülthoff and K. G. Götz. Analogous motion illusion in man and fly. Nature, 278:636-638, 1979.

[194]
H. H. Bülthoff and D. Kersten. Interactions between transparency and depth. Perception, 18:A22b, 1989.

[195]
H. H. Bülthoff and H. A. Mallot. Interaction of different modules in depth perception. In Proceedings of the 1st International Conference on Computer Vision, pages 295-305, June 1987.

[196]
H. H. Bülthoff and H. A. Mallot. Interaction of depth modules: stereo and shading. Journal of the Optical Society of America, 5:1749-1758, 1988.

[197]
H. H. Bülthoff and H. A. Mallot. Integration of stereo, shading and texture. In A. Blake and T. Troscianko, editors, AI and the Eye. Wiley, London, UK, 1990.

[198]
H. H. Bülthoff. Figure-ground discrimination in the visual system of drosophila melanogaster. Biological Cybernetics, 41:139-145, 1981.

[199]
H. H. Bülthoff. Drosophila mutants disturbed in visual orientation. ii. mutants affected in movement and position computation. Biological Cybernetics, 45:71-77, 1982.

[200]
H. H. Bülthoff. Shape from X: Stereo, texture, specularity. In M. Landy and A. Movshon, editors, Computational Models of Visual Processing. MIT Press, Cambridge, MA, 1991.

[201]
J. B. Burns, R. Weiss, and E. Riseman. View variation of point-set and line segment features. In Proceedings Image Understanding Workshop, pages 650-659, April 1990.

[202]
J. B. Burns, R. Weiss, and E. Riseman. View variation of point-set and line segment features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:51-68, 1993.

[203]
D. J. Burr. Matching elastic templates. In O. J. Braddick and A. C. Sleigh, editors, Physical and biological processing of images, pages 260-270. Springer-Verlag, Berlin, 1983.

[204]
P. Burt. Smart sensing within a Pyramid Vision Machine. Proc. IEEE, 76:139-153, 1988.

[205]
M. Burton, V. Bruce, and N. Dench. What's the difference between men and women? evidence from facial measurement. Perception, 22:153-176, 1993.

[206]
T. A. Busey, N. P. Brady, and J. E. Cutting. Compensation is unnecessary for the perception of faces in slanted pictures. Perception and Psychophysics, 48:1-11, 1990.

[207]
A. Califano and R. Mohan. Multidimensional indexing for recognizing visual shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:373-392, 1994.

[208]
F. W. Campbell and J. G. Robson. Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.), 197:551-566, 1968.

[209]
D. T. Campbell. Pattern matching as an essential in distal knowing. In H. Kornblith, editor, Naturalizing epistemology, pages 49-70. MIT Press, 1985.

[210]
J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:679-698, 1986.

[211]
B. Caprile, F. Girosi, and T. Poggio, 1991. in preparation.

[212]
B. Caprile and F. Girosi. A non-deterministic minimization algorithm. A. I. Memo 1254, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, Sept. 1990.

[213]
M. Carandini and D. Ferster. A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science, 276:949-952, 1997.

[214]
M Carandini and D J Heeger. Summation and division by neurons in primate visual cortex. Science, 264:1333-1336, 1994.

[215]
S. Carey, R. Diamond, and B. Woods. Development of face recognition-a maturational component? Developmental Psychology, 16:257-269, 1980.

[216]
S. Carey and R. Diamond. From piecemeal to configurational representation of faces. Science, 195:312-314, 1977.

[217]
C. R. Carlson and R. W. Klopfenstein. Spatial frequency model for hyperacuity. Journal of the Optical Society of America, A2:1747-1751, 1985.

[218]
E. H. Carlton. Connection between internal representation of rigid transformation and cortical activity paths. Biological Cybernetics, 59:419-429, 1988.

[219]
G. J. Carman and L. Welch. Three-dimensional illusory contours and surfaces. Nature, 360:585-587, 1992.

[220]
T. K. Carne. The geometry of shape spaces. Proc. Lond. Math. Soc., 61:407-432, 1990.

[221]
G. A. Carpenter, S. Grossberg, and J. Reynolds. ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. CAS/CNS-TR 91-001, Boston University, 1991.

[222]
G. A. Carpenter, S. Grossberg, and D. B. Rosen. Fuzzy ART: An adaptive resonance algorithm for rapid stable classification of analog patterns. In Proc. Intl. Joint Conf. on Neural Networks, pages 411-416, 1991.

[223]
G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. on Neural Networks, 3:698-713, 1992.

[224]
G. A. Carpenter and S. Grossberg. Adaptive resonance theory: Neural network architectures for self-organizing pattern recognition. In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 383-389. North-Holland, Amsterdam, 1990.

[225]
J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional scaling via an N-way generalization of the Eckart-Young decomposition. Psychometrika, 35:283-319, 1970.

[226]
E. C. Carterette and M. P. Friedman. Psychophysical judgment and measurement. vol. 2 in the Handbook of Perception, 1978.

[227]
P. Cavanagh. Local log polar frequency analysis in the striate cortex as a basis for size and orientation invariance. In D. Rose and V. G. Dobson, editors, Models of the visual cortex, pages 146-157. Wiley, New York, NY, 1985.

[228]
P. Cavanagh. Reconstructing the third dimension: interactions between color, texture, motion, binocular disparity and shape. Computer Vision, Graphics, and Image Processing, 37:171-195, 1987.

[229]
P. Cavanagh. Vision is getting easier every day. Perception, 24:1227-1232, 1995. guest editorial.

[230]
J. Cerella. Pigeons and perceptrons. Pattern Recognition, 19:431-438, 1987.

[231]
J. Cerella. Pigeon pattern perception: limits on perspective invariance. Perception, 19:141-159, 1990.

[232]
D. Chalmers. Absent qualia, fading qualia, dancing qualia. In T. Metzinger, editor, Conscious experience. Imprint Academic, 1995.

[233]
E. C. Charles and N. K. Logothetis. The responses of middle temporal (mt) neurons to isoluminant stimuli. Invest. Ophthalm. Vis. Science, 30:427, 1989.

[234]
R. Chellappa, R. Chatterjee, and R. Baghdazian. Texture synthesis and coding using Gaussian Markov field models. IEEE Trans. SMC, 15:298-303, 1985.

[235]
S. Chen and D. L. Donoho. Basis pursuit. In Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, volume 1, pages 41-44, Pacific Grove, CA, 1994. IEEE Comput. Soc. Press.

[236]
S. S. Chen and M. Penna. Shape and motion of nonrigid bodies. Computer Vision, Graphics, and Image Processing, 36:175-207, 1986.

[237]
K. Cheng, T. Hasegawa, K. Saleem, and K. Tanaka. Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J. of Neurophysiology, 71(6):2269-2280, 1994.

[238]
G. Chevalier, S. Vacher, J. M. Deniau, and M. Desban. Disinhibition as a basic process in the expression of striatal function. I. The striatonigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Research, 334:215-226, 1985.

[239]
R. T. Chin and C. R. Dyer. Model-based recognition in robot vision. ACM Comp. Surv., 18:67-108, 1986.

[240]
P. S. Churchland. Neurophilosophy. MIT Press, Cambridge, MA, 1987.

[241]
P. M. Churchland. A neurocomputational perspective. MIT Press, Cambridge, MA, 1989.

[242]
J. J. Clark and N. Ferrier. Modal control of an attentive visual system. In Proceedings of the 2nd International Conference on Computer Vision, pages 514-523, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[243]
A. Clark. Sensory qualities. Clarendon Press, Oxford, 1993.

[244]
W. F. Clocksin. Perception of surface slant and edge labels from optical flow: a computational approach. Perception, 9:253-269, 1980.

[245]
E.E. Clothiaux, L. N Cooper, and M.F. Bear. Synaptic plasticity in visual cortex: Comparison of theory with experiment. Journal of Physiology, 66:1785-1804, 1991.

[246]
L. Coetzee and E. C. Botha. Fingerprint recognition in low quality images. Pattern Recognition, 26:1441-1460, 1993.

[247]
J. Cohen. Dependency of the spectral reflectance curves of the Munsell color chips. Psychonomic Sciences, 1:369-370, 1964.

[248]
D. Cohn, E. Riskin, and R. Ladner. Theory and practice of vector quantizers trained on small training sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:54-65, 1994.

[249]
H. Cohn. Conformal mappings on Riemann surfaces. McGraw-Hill, New York, 1967.

[250]
Neural networks. special issue of IEEE Computer, March 1988.

[251]
J. H. Connell. Learning shape descriptions: generating and generalizing models of visual objects. A.I. TR No. 853, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1985.

[252]
L.A. Cooper. Demonstration of a mental analog of an external rotation. Perception and Psychophysics, 19:296-302, 1976.

[253]
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273-297, 1995.

[254]
J. M. Cortese and B. P. Dyre. Perceptual similarity of shapes generated from Fourier Descriptors. Journal of Experimental Psychology: Human Perception and Performance, 22:133-143, 1996.

[255]
S. Cost and S. Salzberg. A weighted nearest-neighbor algorithm for learning with symbolic features. Machine Learning, 10:57-78, 1993.

[256]
R. M. J. Cotterill, editor. Computer simulation in brain science. Cambridge Univ. Press, Cambridge, 1988.

[257]
G. W. Cottrell, P. Munro, and D. Zipser. Learning internal representations from gray-scale images: An example of extensional programming. In Ninth Annual Conference of the Cognitive Science Society, pages 462-473, Hillsdale, 1987. Erlbaum.

[258]
T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans. on Information Theory, IT-13:21-27, 1967.

[259]
J. Cowie and W. Lehnert. Information extraction. Communications of the ACM, 39:80-91, 1996.

[260]
I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. Stereo without disparity gradient smoothing: a Bayesian sensor fusion solution. In British Machine Vision Conf., pages 337-346, Berlin, 1992. Springer-Verlag.

[261]
F. H. C. Crick, D. C. Marr, and T. Poggio. An information-processing approach to understanding the visual cortex. In F. Schmitt, editor, The organization of the cerebral cortex. MIT Press, Cambridge, MA, 1981.

[262]
F. Crick and C. Koch. Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2:263-275, 1990.

[263]
R. Cummins. Meaning and mental representation. MIT Press, Cambridge, MA, 1989.

[264]
R. Cummins. Representations, Targets, and Attitudes. MIT Press, Cambridge, MA, 1996.

[265]
J. E. Cutting and R. T. Millard. Three gradients and the perception of flat and curved surfaces. J. of Exp. Psychology: General, 113:198-216, 1984.

[266]
F. Cutzu and S. Edelman. Viewpoint-dependence of response time in object recognition. CS-TR 10, Weizmann Institute of Science, 1992.

[267]
F. Cutzu and S. Edelman. Canonical views in object representation and recognition. Vision Research, 34:3037-3056, 1994.

[268]
F. Cutzu and S. Edelman. Explorations of shape space. CS-TR 95-01, Weizmann Institute of Science, 1995.

[269]
F. Cutzu and S. Edelman. Faithful representation of similarities among three-dimensional shapes in human vision. Proceedings of the National Academy of Science, 93:12046-12050, 1996.

[270]
F. Cutzu and S. Edelman. Representation of object similarity in human vision: psychophysics and a computational model. Vision Research, 1997. in press.

[271]
F. Cutzu. Viewpoint effects and visual similarity in object perception as a basis for understanding visual representation. PhD thesis, Weizmann Institute of Science, 1996.

[272]
G. Cybenko. Approximations by superpositions of sigmoidal functions. Math. Control, Signals, Systems, 2:303-314, 1989.

[273]
D. Cyganski and J. A. Orr. Application of tensor theory to object recognition and orientation determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:662-673, 1985.

[274]
A. R. Damasio. The brain binds entities and events by multiregional activation from convergence zones. Neural Computation, 1:123-132, 1989.

[275]
J. G. Daugman. Spatial visual channels in the fourier plane. Vision Research, 24:891-910, 1984.

[276]
J. G. Daugman. An information-theoretic view of analog representation in the striate cortex. In E. L. Schwartz, editor, Computational Neuroscience, pages 403-423. MIT Press, 1988.

[277]
D. Davidson. Essays on actions and events. Clarendon Press, Oxford, 1980.

[278]
P. J. Davis and P. Rabinowitz. Methods of numerical integration. Academic Press, New York, 1975.

[279]
L. S. Davis. A survey of edge detection techniques. Computer Graphics and Image Processing, 4:248-270, 1975.

[280]
S. Dawis, R. Shapley, E. Kaplan, and D. Tranchina. The receptive field organization of X-cells in the cat: spatiotemporal coupling and asymmetry. Vision Research, 24:549-564, 1984.

[281]
P. Dayan, G. E. Hinton, and R. M. Neal. The Helmholtz Machine. Neural Computation, 7:889-904, 1995.

[282]
R. L. De Valois and K. K. De Valois. Neural coding of color. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume V, pages 117-166. Academic Press, New York, NY, 1978.

[283]
D. DeCarlo and D. Metaxas. Blended deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:443-448, 1996.

[284]
P. Demartines. Analyse de données par réseaux de neurones auto-organisants. PhD thesis, Inst. National Polytechnique de Grenoble, 1994.

[285]
D. DeMers and G. Cottrell. Nonlinear dimensionality reduction. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 580-587. Morgan Kaufmann, 1993.

[286]
D. C. Dennett. The intentional stance. MIT Press, Cambridge, MA, 1987.

[287]
D. C. Dennett. When Philosophers Encounter Artificial Intelligence. Daedalus, 117:283-295, 1988.

[288]
D. C. Dennett. Consciousness explained. Little, Brown & Company, Boston, MA, 1991.

[289]
J. B. Deregowski. Real space and represented space: cross-cultural perspectives. Behav. Brain Sciences, 12:51-119, 1989.

[290]
R. Desimone, T. D. Albright, C. G. Gross, and C. J. Bruce. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci., 4:2051-2062, 1984.

[291]
R. Desimone, S. J. Schein, J. Moran, and L. G. Ungerleider. Contour, color and shape analysis beyond the striate cortex. Vision Research, 25:441-452, 1985.

[292]
R. Desimone and L.G. Ungerleider. Neural mechanisms of visual processing in monkeys. In F. Boler and J. Grafman, editors, Handbook of Neuropsychology, volume 2, pages 267-299. Elsevier, Amsterdam, 1989.

[293]
R. Diamond and S. Carey. Why faces are and are not special: an effect of expertise. Journal of experimental psychology, 115(2):107-117, 1986.

[294]
S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. 3-D shape recovery using distributed aspect matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:174-198, 1992.

[295]
M. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs, NJ, 1976.

[296]
P. C. Dodwell. Human perception of patterns and objects. In R. Held, H. W. Leibowitz, and H.-L. Teuber, editors, Handbook of sensory physiology: Perception, chapter 15, pages 523-548. Springer-Verlag, Berlin, 1978.

[297]
P. C. Dodwell. The Lie transformation group model of visual perception. Perception and Psychophysics, 34:1-16, 1983.

[298]
B. Dresp. Local brightness mechanisms sketch out surfaces but do not fill them in: psychophysical evidence in the kanisza square. Perception and Psychophysics, 52:562-570, 1992.

[299]
F. Dretske. Knowledge and the flow of information. MIT Press, Cambridge, MA, 1981.

[300]
F. Dretske. Seeing, believing, and knowing. In D. N. Osherson, S. M. Kosslyn, and J. M. Hollerbach, editors, Visual cognition and action, volume 2, pages 129-148. MIT Press, Cambridge, MA, 1990.

[301]
M. Drumheller and T. Poggio. On parallel stereo. In Proceedings of IEEE Conference on Robotics and Automation, 1986.

[302]
R. O. Duda and P. E. Hart. Pattern classification and scene analysis. Wiley, New York, 1973.

[303]
J. Duncan and G. W. Humphreys. Visual search and stimulus similarity. Psychol. Review, 96:433-458, 1989.

[304]
R. Durbin and G. Mitchison. A dimension reduction framework for understanding cortical maps. Nature, 343:644-647, 1990.

[305]
S. Duvdevani-Bar, F. Cutzu, and S. Edelman. A computational model of similarity-based representation of the shape space. CS-TR, Weizmann Institute of Science, 1995. in preparation.

[306]
S. Duvdevani-Bar and S. Edelman. On similarity to prototypes in 3D object representation. CS-TR 95-11, Weizmann Institute of Science, 1995.

[307]
M. D'Zmura and G. Iverson. A formal approach to color constancy: the recovery of surface and light source spectral properties using bilinear models. In C. Dowling, F. Roberts, and P. Theuns, editors, Recent Progress in Mathematical Psychology. Erlbaum, Hillsdale, NJ, 1997.

[308]
J. T. Todd E. Mingolla. Perception of solid shape from shading. Biological Cybernetics, 53:137-151, 1986.

[309]
U. Eco. Meaning and mental representations. Indiana University Press, Bloomington, IN, 1988.

[310]
S. Edelman, H. Bülthoff, and D. Weinshall. Exploring representation of 3D objects for visual recognition. In Invest. Ophthalm. Vis. Science, volume 30, page 252, 1989.

[311]
S. Edelman, H. Bülthoff, and D. Weinshall. Integrating information for visual recognition of 3D objects. Perception, 18:517, 1989.

[312]
S. Edelman, S. Ullman, and T. Flash. Reading cursive handwriting by alignment of letter prototypes. International Journal of Computer Vision, 5:303-331, 1990.

[313]
S. Edelman, D. Reisfeld, and Y. Yeshurun. A system for face recognition that learns from examples. CS-TR 91-20, Weizmann Institute of Science, October 1991. to appear in Proc. 2nd European Conf. on Computer Vision.

[314]
S. Edelman, D. Reisfeld, and Y. Yeshurun. Learning to recognize faces from examples. In G. Sandini, editor, Proc. 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, volume 588, pages 787-791. Springer Verlag, 1992.

[315]
S. Edelman, D. Weinshall, H. Bülthoff, and T. Poggio. A model of the acquisition of object representations in human 3D visual recognition. In P. Dario, G. Sandini, and P. Aebischer, editors, Proc. NATO Advanced Research Workshop on Robots and Biological Systems, pages 99-118. Springer Verlag, 1993.

[316]
S. Edelman, H. H. Bülthoff, and I. Bülthoff. Features of the representation space for 3D objects. MPIK-TR 40, Max Planck Institute for Biological Cybernetics, September 1996.

[317]
S. Edelman, H. H. Bülthoff, and I. Bülthoff. Interdependence of feature dimensions in the representation of 3D objects. Invest. Ophthalm. Vis. Sci. Suppl. (Proc. ARVO), April 1996. abstract.

[318]
S. Edelman, F. Cutzu, and S. Duvdevani-Bar. Similarity to reference shapes as a basis for shape representation. In G. W. Cottrell, editor, Proceedings of 18th Annual Conf. of the Cognitive Science Society, pages 260-265, San Diego, CA, July 1996.

[319]
S. Edelman, N. Intrator, and T. Poggio. Complex cells and object recognition, 1997. submitted.

[320]
S. Edelman, H. H. Bülthoff, and E. Sklar. Task and object learning in visual recognition. A. I. Memo 1348, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, April 1991.

[321]
S. Edelman, H. Bülthoff, and D. Weinshall. Stimulus familiarity determines recognition strategy for novel 3D objects. A.I. Memo No. 1138, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, July 1989.

[322]
S. Edelman and H. H. Bülthoff. Generalization of object recognition in human vision across stimulus transformations and deformations. In Y. Feldman and A. Bruckstein, editors, Proc. 7th Israeli AICV Conference, pages 479-487. Elsevier, 1990.

[323]
S. Edelman and H. H. Bülthoff. Viewpoint-specific representations in 3D object recognition. A.I. Memo No. 1239, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990.

[324]
S. Edelman and H. H. Bülthoff. Modeling human visual object recognition. In Proc. IJCNN-92, volume IV, pages 37-42, 1992.

[325]
S. Edelman and H. H. Bülthoff. Orientation dependence in the recognition of familiar and novel views of 3D objects. Vision Research, 32:2385-2400, 1992.

[326]
S. Edelman and S. Duvdevani-Bar. A model of visual recognition and categorization. Phil. Trans. R. Soc. Lond. (B), 352:--, 1997. to appear.

[327]
S. Edelman and S. Duvdevani-Bar. Similarity, connectionism, and the problem of representation in vision. Neural Computation, 9:701-720, 1997.

[328]
G. M. Edelman and L. Finkel. Neuronal group selection in the cerebral cortex. In G. M. Edelman, W. E. Gall, and W. M. Cowan, editors, Dynamical aspects of neocortical function, pages 653-695. Wiley, New York, 1984.

[329]
S. Edelman and T. Flash. A model of handwriting. Biological Cybernetics, 57:25-36, 1987.

[330]
S. Edelman and N. Intrator. Learning as extraction of low-dimensional representations. In D. Medin, R. Goldstone, and P. Schyns, editors, Mechanisms of Perceptual Learning. Academic Press, 1997. in press.

[331]
S. Edelman and N. Intrator. Learning as formation of low-dimensional representation spaces. In J. Elman, editor, Proc. 19th Cognitive Science Society Meeting, Stanford, CA, 1997. in press.

[332]
S. Edelman and T. Poggio. Bringing the Grandmother back into the picture: a memory-based view of object recognition. A.I. Memo No. 1181, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990. also in Int. J. Pattern Recog. Artif. Intell. 6:37-62, 1992.

[333]
S. Edelman and T. Poggio. Models of object recognition. Current Opinion in Neurobiology, 1:270-273, 1991.

[334]
S. Edelman and T. Poggio. Bringing the Grandmother back into the picture: a memory-based view of object recognition. Int. J. Pattern Recog. Artif. Intell., 6:37-62, 1992.

[335]
S. Edelman and T. Poggio. Integrating visual cues for object segmentation and recognition. Optic News, 15:8-15, May 1989.

[336]
S. Edelman and T. Poggio. Representations in high-level vision: reassessing the inverse optics paradigm. In Proc. DARPA Image Understanding Workshop, pages 944-949, San Mateo, CA, May 1989. Morgan Kaufman.

[337]
S. Edelman and S. Ullman. Reading cursive script by computer. In Proc. 42nd SPSE Conference, pages 179-182, Boston, MA, May 1989.

[338]
S. Edelman and D. Weinshall. Computational vision: a critical review. In R. Watt, editor, Vision and visual dysfunction, volume 14, chapter 4, pages 30-49. Macmillan, London, 1991.

[339]
S. Edelman and D. Weinshall. A self-organizing multiple-view representation of 3D objects. Biological Cybernetics, 64:209-219, 1991.

[340]
S. Edelman and D. Weinshall. Computational approaches to shape constancy. In V. Walsh and J. Kulikowski, editors, Perceptual constancies: why things look as they do. Cambridge University Press, Cambridge, UK, 1997. in press.

[341]
S. Edelman and D. Weinshall. A self-organizing multiple-view representation of 3D objects. A.I. Memo No. 1146, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, August 1989.

[342]
S. Edelman and D. Weinshall. Computational vision: a critical review. A.I. Memo No. 1158, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, October 1989.

[343]
S. Edelman. Line connectivity algorithms for an asynchronous pyramid computer. Computer Vision, Graphics, and Image Processing, 40:169-187, 1987.

[344]
S. Edelman. Reading and writing of cursive script: a computational study. PhD thesis, Weizmann Institute of Science, 1988.

[345]
S. Edelman, 1989. unpublished observations.

[346]
S. Edelman. Reading cursive handwriting. Perception, 18:524, 1989.

[347]
S. Edelman. Features of recognition. CS-TR 91-10, Weizmann Institute of Science, 1991.

[348]
S. Edelman. A network model of object recognition in human vision. In H. Wechsler, editor, Neural networks for perception, volume 1, pages 25-40. Academic Press, New York, 1991.

[349]
S. Edelman. On learning to recognize 3D objects from examples. CS-TR 91-3, Weizmann Institute of Science, 1991.

[350]
S. Edelman. Visual perception. In S. Shapiro, editor, Encyclopedia of AI, volume 2, pages 1655-1663. Wiley, New York, 1991.

[351]
S. Edelman. Class similarity and viewpoint invariance in the recognition of 3D objects. CS-TR 92-17, Weizmann Institute of Science, 1992.

[352]
S. Edelman. Representing 3D objects by sets of activities of receptive fields. CS-TR 92-19, Weizmann Institute of Science, 1992.

[353]
S. Edelman. On learning to recognize 3D objects from examples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:833-837, 1993.

[354]
S. Edelman. Representation, Similarity, and the Chorus of Prototypes. CS-TR 93-10, Weizmann Institute of Science, 1993. to appear in Minds and Machines, 1995.

[355]
S. Edelman. Representing 3D objects by sets of activities of receptive fields. Biological Cybernetics, 70:37-45, 1993.

[356]
S. Edelman. Biological constraints and the representation of structure in vision and language. Psycoloquy, 5(57), 1994.

[357]
S. Edelman. Biological constraints and the representation of structure in vision and language. Psycoloquy, 5(57), September 1994. available electronically as ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/1994.volume.5/psyc.94.5.57.lan% guage-network.3.edelman.

[358]
S. Edelman. Representation without reconstruction. Computer Vision, Graphics, and Image Processing, 60:92-94, 1994.

[359]
S. Edelman. Class similarity and viewpoint invariance in the recognition of 3D objects. Biological Cybernetics, 72:207-220, 1995.

[360]
S. Edelman. Representation of similarity in 3D object discrimination. Neural Computation, 7:407-422, 1995.

[361]
S. Edelman. Representation, Similarity, and the Chorus of Prototypes. Minds and Machines, 5:45-68, 1995.

[362]
S. Edelman. Why have lateral connections in the visual cortex? In J. Sirosh, R. Miikkulainen, and Y. Choe, editors, Lateral Interactions in the Cortex: Structure and Function. electronic book, http://www.cs.utexas.edu/users/nn/lateral_interactions_book/cover.html edition, 1995.

[363]
S. Edelman. Representation is representation of similarity. CS-TR 96-08, Weizmann Institute of Science, 1996. submitted to Behavior and Brain Sciences.

[364]
S. Edelman. Receptive fields for vision: from hyperacuity to object recognition. In R. Watt, editor, Vision. MIT Press, Cambridge, MA, 1997. in press.

[365]
S. Edelman. Representation and recognition in vision. 1997. forthcoming.

[366]
S. Edelman. Representation is representation of similarity, 1997. Behavioral and Brain Sciences, to appear.

[367]
S. Edelman. Vision reanimated. In Y. Aloimonos, S. Carlsson, and J.-O. Eklundh, editors, Proc. 7th Rosenön Workshop on Computer Vision. L. Erlbaum, Hillsdale, NJ, 1997. forthcoming.

[368]
M. Eden. On the formalization of handwriting. In Proc. Symp. Appl. Math., volume 12, pages 83-88, Providence, RI, 1961. Amer. Math. Soc.

[369]
B. Efron and R. Tibshirani. An introduction to the bootstrap. Chapman and Hall, London, 1993.

[370]
P. D. Eimas and A. M. Galaburda, editors. Neurobiology of cognition. MIT Press, Cambridge, MA, 1990.

[371]
G. Ekman and R. Lindman. Multidimensional ratio scaling and multidimensional similarity. Reports from the Psychological Laboratories 103, University of Stockholm, 1961.

[372]
R. Ellis, D. A. Allport, G. W. Humphreys, and J. Collis. Varieties of object constancy. Q. Journal Exp. Psychol., 41A:775-796, 1989.

[373]
J. L. Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

[374]
M. W. Fahle, S. Edelman, and T. Poggio. Fast perceptual learning in hyperacuity. Vision Research, 35:3003-3013, 1995.

[375]
M. W. Fahle and S. Edelman. Long-term learning in vernier acuity: influence of stimulus orientation, range and of feedback. Vision Research, 33:397-412, 1993.

[376]
M. W. Fahle and T. Poggio. Visual hyperacuity: spatiotemporal interpolation in human vision. Proceedings of the Royal Society of London B, 213:451-477, 1981.

[377]
M. W. Fahle. Non-fusable stimuli and the role of binocular inhibition in normal and pathological vision, especially strabismus. Documenta Ophthalmologica, 55:323-340, 1983.

[378]
M. W. Fahle. Parallel, semi-parallel, and serial processing of visual hyperacuity. In Proc. SPIE Conf. on Electronic Imaging: science and technology, Santa Clara, CA, February 1990. also in Vision Reseach 31, 2149-2184 (1991).

[379]
S. E. Fahlman. NETL: a system for representing and using real-world knowledge. MIT Press, Cambridge, MA, 1979.

[380]
J.-C. Falmagne. Elements of psychophysical theory. Clarendon Press, Oxford, 1985.

[381]
T. J. Fan, G. Medioni, and R. Nevatia. Recognizing 3D objects using surface descriptions. In Proceedings of the 2nd International Conference on Computer Vision, pages 474-481, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[382]
J. D. Farmer, N. H. Packard, and A. S. Perelson. The immune system, adaptation, and machine learning. Physica D, 22:187-204, 1986.

[383]
H. Feigl. The 'Mental' and the 'Physical'. In H. Feigl, M. Scriven, and G. Maxwell, editors, Concepts, theories, and the mind-body problem. U. of Minnesota Press, Minneapolis. MN, 1958.

[384]
J. A. Feldman and D. H. Ballard. Connectionist models and their properties. Cognitive Science, 6:205-254, 1982.

[385]
L. B. Feldman and S. Bentin. Morphological analysis of disrupted morphemes. Q. Journal Exp. Psychol, 47A:407-435, 1994.

[386]
J. Feldman. Constructing perceptual categories. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 244-250, 1992.

[387]
D. J. Felleman and D. C. Van Essen. Distributed hierarchial processing in primate cerebral cortex. Cerebral Cortex, 1:1-47, 1991.

[388]
M. Fendick and G. Westheimer. Effects of practice and the separation of test targets on foveal and perifoveal hyperacuity. Vision Research, 23:145-150, 1983.

[389]
M. Ferraro and T. M. Caelli. Lie transformation groups, integral transforms, and invariant pattern recognition. Spatial Vision, 8:33-44, 1994.

[390]
D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system: evidence for a local association field. Vision Research, 33:173-193, 1993.

[391]
D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, A 4:2379-2394, 1987.

[392]
D. J. Field. Scale-invariance and self-similar wavelet transforms: An analysis of natural scenes and mammalian visual systems. In M. Farge, J. Hunt, and T. Vassilicos, editors, Wavelets, Fractals and Fourier Transforms: New Developments and new applications, pages 151-193. Oxford University Press, 1993.

[393]
D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559-601, 1994.

[394]
S. Finch and N. Chater. A hybrid approach to the automatic learning of linguistic categories. available via ftp from archive.cis.ohio-state.edu as /pub/neuroprose/finch.hybrid.ps.Z, October 1991.

[395]
D. J. Finney. Probit analysis. Cambridge University Press, Cambridge, 1971.

[396]
A. Fiorentini and N. Berardi. Perceptual learning specific for orientation and spatial frequency. Nature, 287:453-454, 1981.

[397]
M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24:381-395, 1981.

[398]
M. A. Fischler and O. Firschein, editors. Readings in computer vision: issues, problems, principles and paradigms. Morgan Kaufmann, Los Altos, CA, 1987.

[399]
J. Fiser, I. Biederman, and E. E. Cooper. To what extent can matching algorithms based on direct outputs of spatial filters account for human shape recognition? Spatial Vision, 10:237-271, 1997.

[400]
W. T. Fishback. Projective and Euclidean Geometry. Wiley, New York, 1969.

[401]
C. B. Fisher and M. P. Fracasso. The Goldmeier effect in adults and children: environmental, retinal, and phenomenal influences on judgements of visual symmetry. Perception, 16:29-39, 1987.

[402]
M. J. Flannagan, L. S. Fried, and K. J. Holyoak. Distributional expectations and the induction of category structure. Journal of Experimental Psychology: Learning, Memory and Cognition, 12:241-256, 1986.

[403]
T. Flash and E. Henis. Arm trajectory modification during reaching towards visual targets. J. Cog. Neurosci., 3:220-230, 1991.

[404]
T. Flash and N. Hogan. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci., 5:1688-1703, 1985.

[405]
T. E. Flick and L. E. Jones. A combinatorial approach for classification of patterns with missing information and random orientation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:482-490, 1986.

[406]
J. A. Fodor. RePresentations. MIT Press, Cambridge, MA, 1981.

[407]
J. A. Fodor. The modularity of mind. MIT Press, Cambridge, MA, 1983.

[408]
J. A. Fodor. Psychosemantics. MIT Press, Cambridge, MA, 1987.

[409]
P. Foldiak. Learning invariance from transformation sequences. Neural Computation, 3:194-200, 1991.

[410]
K. I. Forster. Lexical acquisition and the modular lexicon. Language and cognitive processes, 1:87-108, 1985.

[411]
K. I. Forster. Masked priming with graphemically related forms: repetition or partial activation? Quarterly J. Exp. Psychol., 39A:211-251, 1987.

[412]
D. Forsyth, J. L. Mundy, A. Zisserman, and C. M. Brown. Invariance - a new framework for vision. In Proceedings of the 3rd International Conference on Computer Vision, pages 598-605, Osaka, 1990. IEEE, Washington, DC.

[413]
D. Forsyth and A. Zisserman. Mutual illumination. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 466-473, San-Diego, CA, 1989.

[414]
D. H. Foster and P. A. Ward. Asymmetries in oriented-line detection indicate two orthogonal filters in early vision. Proceedings of the Royal Society of London B, 243:75-81, 1991.

[415]
D. H. Foster. A hypothesis connecting visual pattern recognition and apparent motion. Kybernetik, 13:151-154, 1973.

[416]
W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:891-906, 1991.

[417]
W. T. Freeman. Exploiting the generic view assumption to estimate scene parameters. In Proceedings of the 3rd International Conference on Computer Vision, pages 347-356, Washington, DC, 1993. IEEE.

[418]
J. J. Freyd. Five hunches about perceptual processes and dynamic representations. In D. E. Meyer and S. Kornblum, editors, Attention and Performance, volume XIV, chapter 5, pages 99-119. MIT Press, 1993.

[419]
L. S. Fried and K. J. Holyoak. Induction of category distributions: a framework for classification learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 10:234-257, 1984.

[420]
J. Friedman. Flexible metric nearest neighbor classification. Technical report, Stanford University, 1994.

[421]
J. P. Frisby. Seeing. Oxford University Press, Oxford, 1979.

[422]
K. J. Friston. Imaging cognitive anatomy. Trends in Cognitive Sciences, 1:21-27, 1997.

[423]
R. Frost, K. I. Forster, and A. Deutsch. What can we learn from the morphology of Hebrew. -, -:--, 1995. submitted.

[424]
I. Fujita, K. Tanaka, M. Ito, and K. Cheng. Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360:343-346, 1992.

[425]
K. Fukushima. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks, 1:119-130, 1988.

[426]
W. Gale, K. Church, and D. Yarowsky. A method for disambiguating word senses in a large corpus. Computers and the Humanities, 26:415-439, 1992.

[427]
E. Galin and S. Akkouche. Métamorphose d'objets tridimensionnels: quelques méthodes d'accélération. Revue Techniques et Sciences Informatiques, 15:329-350, 1996.

[428]
C. R. Gallistel. The organization of learning. MIT Press, Cambridge, MA, 1990.

[429]
E. Gamble, D. Geiger, T. Poggio, and D. Weinshall. Labeling edges and the integration of low-level visual modules. IEEE Trans. SMC, 19(6), 1989.

[430]
C. P. Garbin. Visual-touch perceptual equivalence for shape information in children and adults. Perception and Psychophysics, 48:271-279, 1990.

[431]
M. Gasser. Transfer in a connectionist model of the acquisition of morphology. CogSci TR 147, Indiana University, Bloomington, IN, 1995. an expanded version of a paper presented at the Morphology Workshop, Nijmegen, June 13, 1995.

[432]
I. Gauthier and M. J. Tarr. Becoming a `Greeble' expert: Exploring the face recognition mechanism. Vision Research, 37:1673-1682, 1997.

[433]
S. Geman, D. Geman, and C. Graffigne. Locating texture and object boundaries. In P. A. Devijver and J. Mittler, editors, Pattern recognition theory and applications. Springer-Verlag, Heidelberg, 1987.

[434]
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721-741, 1984.

[435]
S. Geman and C.-R. Hwang. Nonparametric maximum likelihood estimation by the method of sieves. Annals of statistics, 10:400-414, 1982.

[436]
S. Geman. Minimum Description Length priors for object recognition. In Challenging the frontiers of knowledge using statistical science (Proc. JSM'96), 1996. in press.

[437]
A. Georgopoulos, J. T. Lurito, M. Petrides, A. B. Schwartz, and J. T. Massey. Mental rotation of the neuronal population vector. Science, 243:234-236, 1988.

[438]
P. C. Gerhardstein and I. Biederman. 3D orientation invariance in visual object recognition. Invest. Ophthalm. Vis. Science Suppl., 32:338, 1991.

[439]
A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer Academic Publishers, Boston, 1992.

[440]
G. M. Ghose, R. D. Freeman, and I. Ohzawa. Local intracortical connections in the cat's visual cortex: postnatal development and plasticity. J. Neurophysiol., 72:1290-1303, 1994.

[441]
J. J. Gibson. Adaptation, after-effect, and contrast in the perception of curved lines. J. Exp. Psychol., 16:1-31, 1933.

[442]
J. J. Gibson. The perception of the visual world. Houghton Mifflin, Boston, MA, 1950.

[443]
J. J. Gibson. The senses considered as perceptual systems. Houghton Mifflin, Boston, MA, 1966.

[444]
J. J. Gibson. The ecological approach to visual perception. Houghton Mifflin, Boston, MA, 1979.

[445]
Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and representing aspect graphs of polyhedral objects. In Proceedings of the 2nd International Conference on Computer Vision, pages 30-39, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[446]
C. D. Gilbert. Neuronal and synaptic organization in the cortex. In P. Rakic and W. Singer, editors, Neurobiology of Neocortex, pages 219-240. Wiley, New York, NY, 1988.

[447]
C. D. Gilbert. Neuronal dynamics and perceptual learning. Current Biology, 4:627-629, 1994.

[448]
A. L. Gilchrist. Perceived lightness depends on perceived spatial arrangement. Science, 195:185-187, 1977.

[449]
F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219-269, 1995. (PostScript)

[450]
F. Girosi and T. Poggio. Networks and the best approximation property. A.I. Memo 1164, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990.

[451]
M. A. Gluck and R. Granger. Computational models of the neural bases of learning and memory. Ann. Rev. Neurosci., 16:667-706, 1993.

[452]
C. Goad. Fast 3D model-based vision. In A. P. Pentland, editor, From pixels to predicates, pages 371-391. Ablex, Norwood, NJ, 1986.

[453]
K. Goebel and W. A. Kirk. Topics in metric fixed point theory. Number 28 in Cambridge studies in advanced mathematics. Cambridge Univ. Press, 1990.

[454]
R. L. Goldstone. The role of similarity in categorization: providing a groundwork. Cognition, 52:125-157, 1994.

[455]
M. A. Goodale, A. D. Milner, L. S. Jakobson, and D. P. Carey. A neurological dissociation between perceiving objects and grasping them. Nature, 349:154-156, 1991.

[456]
N. Goodman. The structure of appearance. Reidel, Dordrecht, 1977.

[457]
W. J. Gordon and J. A. Wixom. Shepard's method of "Metric Interpolation" to bivariate and multivariate interpolation. Mathematics of Computation, 32:253-264, 1978.

[458]
R. Granger and G. Lynch. Higher olfactory processes: perceptual learning and memory. Current Opinion in Neurobiology, 1:209-214, 1991.

[459]
P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica, 9D:189-208, 1983.

[460]
C. M. Gray, P. König, A. K. Engel, and W. Singer. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338:334-337, 1989.

[461]
D. M. Green and J. A. Swets. Signal detection theory and psychophysics. Wiley, New York, 1966.

[462]
R. L. Gregory. Illusions and hallucinations. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume IX, pages 337-357. Academic Press, New York, NY, 1978.

[463]
R. A. M. Gregson and L. A. Britton. The size-weight illusion in 2D nonlinear psychophysics. Perception and Psychophysics, 48:343-356, 1990.

[464]
R. A. M. Gregson. Psychometrics of similarity. Academic Press, New York, 1975.

[465]
R. A. M. Gregson. Nonlinear psychophysical dynamics. Erlbaum, Hillsdale, NJ, 1988.

[466]
K. Grill Spector, S. Edelman, and R. Malach. Anatomical origin and computational role of diversity in the response properties of cortical neurons. In D. S. Touretzky G. Tesauro and T. K. Leen, editors, Advances in Neural Information Processing 7, pages 117-124. MIT Press, 1995.

[467]
K. Grill-Spector, T. Hendler, T. Kushnir, I. Kahn, S. Edelman, Y. Itzchak, and R. Malach. Hierarchy of visual object-processing stages revealed in human occipital lobe: an fMRI study, 1996.

[468]
K. Grill-Spector, T. Kushnir, T. Hendler, S. Edelman, Y. Itzchak, and R. Malach. A sequence of early object processing stages revealed by fMRI in human occipital lobe. 1997. submitted.

[469]
J. Grimes. On the failure to detect changes in scenes across saccades. In Kathleen Akins, editor, Perception, volume 5 of Vancouver Studies in Cognitive Science, chapter 4. Oxford University Press, New York, 1995.

[470]
W. E. L. Grimson and T. Lozano-Pérez. Localizing overlapping parts by searching the interpretation tree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9:469-482, 1987.

[471]
W. E. L. Grimson. From Images to Surfaces. MIT Press, Cambridge, MA, 1981.

[472]
W. E. L. Grimson. Computational experiments with a feature-based stereo algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:17-34, 1985.

[473]
W. E. L. Grimson. Model-Based Vision. MIT Press, Cambridge, MA, 1990.

[474]
C. G. Gross, C. E. Rocha-Miranda, and D. B. Bender. Visual properties of cells in inferotemporal cortex of the macaque. J. Neurophysiol., 35:96-111, 1972.

[475]
C. G. Gross and M. Mishkin. The neural basis of stimulus equivalence across retinal translation. In S. Harnad, R. W. Doty, L. Goldstein, J. Jaynes, and G. Krauthamer, editors, Lateralization in the nervous system. Academic Press, New York, NY, 1977.

[476]
L. Guthrie, J. Pustejovsky, Y. Wilks, and B. Slator. The role of lexicons in natural language processing. Communications of the ACM, 39:63-72, 1996.

[477]
J. Gyoba, T. Yanagida, and S. Akamatsu. View-dependent and view-independent properties in human object recognition. Electronics and Communications in Japan (Part 3), 79:158-165, 1996.

[478]
J. Hadamard. Lectures on the Cauchy problem in linear partial differential equations. Yale University Press, New Haven, CT, 1923.

[479]
P. J. B. Hancock, R. J. Baddeley, and L. S. Smith. The principal components of natural images. Network, 3:61-70, 1992.

[480]
P. J. B. Hancock, A. M. Burton, and V. Bruce. Face processing: human perception and principal components analysis. Memory and Cognition, 24:26-40, 1996. in press. (PostScript)

[481]
D. J. Hand. Discrimination and classification. Wiley, New York, 1981.

[482]
S. J. Hanson and M. A. Gluck. Spherical units as dynamic consequential regions: implications for attention, competition and categorization. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 656-664. Morgan Kaufmann, 1993.

[483]
R. M. Haralick and J. S. Lee. The facet approach to optic flow. In L. Baumann, editor, Proceedings Image Understanding Workshop, pages 84-93, McLean, VA, 1983. Scientific Applications International Corporation.

[484]
R. M. Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE, 67:786-804, 1979.

[485]
R. M. Haralick. Digital step edges from zero crossings of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:58-68, 1984.

[486]
S. Harnad, editor. Categorical Perception: The Groundwork of Cognition. Cambridge University Press, New York, 1987.

[487]
S. Harnad. The symbol grounding problem. Physica D, 42:335-346, 1990.

[488]
C. S. Harris and A. R. Gibson. Is orientation-specific color adaptation in human vision due to edge detectors, afterimages, or "dipoles"? Science, 162:1506-1507, 1968.

[489]
C. S. Harris. Insight or out of sight?: two examples of perceptual plasticity in the human adult. In C. S. Harris, editor, Visual Coding and Adaptability, pages 95-149. Erlbaum, Hillsdale, NJ, 1980.

[490]
H. K. Hartline. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol., 121:400-415, 1938.

[491]
E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks with Gaussian hidden units as universal approximations. Neural Computation, 2:210-215, 1990.

[492]
M. E. Hasselmo, M. A. Wilson, B. P. Anderson, and J. M. Bower. Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harbor Symposia on Quantitative Biology, LV:599-610, 1990.

[493]
B. F. Hatfield. Introduction to quantum field theory, path integrals, and strings. In S. T. Yau, editor, Mathematical aspects of string theory, volume 1 of Advanced series in mathematical physics, chapter 1, pages 1-12. World Scientific, Singapore, 1987.

[494]
D. Haussler. Generalizing the PAC model for neural net and other learning applications. UCSC-CRL 89-30, U. of California, Santa Cruz, 1989.

[495]
D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78-150, 1992.

[496]
M J Hawken and A J Parker. Spatial properties of neurons in the monkey striate cortex. Proc. R. Soc. Lon. B, 231:251-288, 1987.

[497]
R. D. Hawkins, T. W. Abrams, T. J. Carew, and E. R. Kandel. A cellular mechanism of classical conditioning in aplysia: Activity-dependent amplification of presynaptic facilitation. Science, 219:400-404, 1983.

[498]
Jr. Hayes, K. C. Reading handwritten words using hierarchical relaxation. Computer Vision, Graphics, and Image Processing, 14:344-364, 1980.

[499]
S. M. Haynes and R. Jain. A qualitative approach for recovering depth in dynamic scenes. In Proc. IEEE Workshop on Computer Vision, pages 66-71, Washington, DC, 1987. IEEE.

[500]
Z. J. He and K. Nakayama. Surfaces versus features in visual search. Nature, 359:231-233, 1992.

[501]
D. O. Hebb. The organization of behavior. Wiley, 1949.

[502]
D. Heeger and G. Hager. Egomotion and the stabilized world. In Proceedings of the 2nd International Conference on Computer Vision, pages 435-440, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[503]
D. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9:181-198, 1992.

[504]
Y. Hel-Or and S. Edelman. A new approach to qualitative stereo. In S. Ullman and S. Peleg, editors, Proc. 12th ICPR, pages 316-320, Jerusalem, Oct. 1994 1994. IEEE Press.

[505]
Y. Hel-Or and P. C. Teo. A common framework for steerability, motion estimation, and invariant feature detection, January 1996. submitted.

[506]
R. Held, H. W. Leibowitz, and H.-L. Teuber, editors. Handbook of sensory physiology: Perception. Springer-Verlag, Berlin, 1978.

[507]
R. Held and A. V. Hein. Adaptation of disarranged hand-eye coordination contingent upon re-afferent stimulation. Perceptual and Motor Skills, 8:87-90, 1958.

[508]
J. Henderson and M. Marcus. Description based parsing in a connectionist network. Technical Report IRCS Report 94-12, U. of Pennsylvania, September 1994.

[509]
L. Henderson, editor. Orthographies and Reading : Perspectives from Cognitive Psychology, Neuropsychology and Linguistics. Erlbaum, Hillsdale, NJ, 1984.

[510]
E. Henis and T. Flash. Mechanisms underlying the generation of averaged modified trajectories. Biological Cybernetics, 1994. in press.

[511]
E. Hering. Ueber die Grenzen der Sehschaerfe. In Bericht. Mathem.-Physikal. Klasse Saechs., page 16. Ges. Wissenschaften, Leipzig, 1899.

[512]
R. J. Herrnstein. Objects, categories, and discriminative stimuli. In H. L. Roitblat, T. G. Bever, and H. S. Terrace, editors, Animal Cognition, pages 233-261, Hillsdale, NJ, 1984. Erlbaum.

[513]
E. C. Hildreth, N. M. Grzywacz, E. H. Adelson, and V. K. Inada. The perceptual buildup of three-dimensional structure from motion. A.I. Memo No. 1141, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[514]
E. C. Hildreth and C. Koch. The analysis of visual motion: from computational theory to neuronal mechanisms. Ann. Rev. Neurosci., 10:477-533, 1987.

[515]
E. C. Hildreth and S. Ullman. The computational study of vision. A.I. Memo No. 1038, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1988.

[516]
E. C. Hildreth. The measurement of visual motion. MIT Press, Cambridge, MA, 1984.

[517]
E. C. Hildreth. Edge detection. In S. Shapiro, editor, Encyclopedia of artificial intelligence, pages 257-267. John Wiley, New-York, NY, 1987.

[518]
G. E. Hinton, P. Dayan, B. J. Frey, and R. Neal. The wake-sleep algorithm for unsupervised neural networks. Science, 268:1158-1161, 1995.

[519]
G. E. Hinton and L. M. Parsons. Scene-based and viewer-centered representations for comparing shapes. Cognition, 30:1-35, 1988.

[520]
D. L. Hintzman. Twenty-five years of learning and memory: was the cognitive revolution a mistake? In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 16, pages 360-391. MIT Press, 1994.

[521]
A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond., 116:500-544, 1952.

[522]
W. Hoff and N. Ahuja. Extracting surfaces from stereo images: An integrated approach. In Proceedings of the 1st International Conference on Computer Vision, pages 284-294, June 1987.

[523]
D. D. Hoffman and B. E. Flinchbaugh. The interpretation of biological motion. Biological Cybernetics, 42:195-204, 1982.

[524]
D. D. Hoffman and W. A. Richards. Parts of recognition. A.I. Memo No. 732, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1983.

[525]
D. D. Hoffman and W. A. Richards. Representing smooth plane curves for recognition: implications for figure-ground reversal. In Proceedings IJCAI, pages 5-8, 1983.

[526]
D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18:65-96, 1984.

[527]
W. C. Hoffman. The neuron as a Lie group germ and a Lie product. Q. Journal Applied Math., XXV:433-440, 1968.

[528]
T. Hofmann and J. Buhmann. Multi% dimensional scaling and data clustering. In G. Tesauro J. D. Cowan and J. Alspector, editors, Neural Information Processing Systems, volume 7, pages 459-466. Morgan Kaufmann, 1994.

[529]
D. R. Hofstadter. Metamagical themas. Viking, Harmondsworth, England, 1985.

[530]
J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction: processes of inference, learning, and discovery. MIT Press, Cambridge, MA, 1986.

[531]
J. H. Holland. Adaptation in natural and artificial systems. U. of Michigan Press, Ann Arbor, MI, 1975.

[532]
J. H. Holland. Escaping brittleness: the possibilities of general purpose machine learning algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine learning: an artificial intelligence approach, volume 2. Kaufmann, Los Altos, CA, 1986.

[533]
R. Horaud and M. Brady. On the geometric interpretation of image contours. In Proceedings of the 1st International Conference on Computer Vision, pages 374-382, London, 1987. IEEE, Washington, DC.

[534]
B. K. P. Horn and M. Brooks. Seeing shape from shading. MIT Press, Cambridge, Mass., 1989.

[535]
B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17:185-203, 1981.

[536]
D. Horn and M. Usher. Oscillatory model of short term memory. In J. Moody, R. Lippman, and S. J. Hanson, editors, Neural Information Processing Systems, volume 4. Morgan Kaufmann, San Mateo, CA, 1992.

[537]
B. K. P. Horn. Determining lightness from an image. Computer Vision, Graphics, and Image Processing, 3:277-299, 1974.

[538]
B. K. P. Horn. Obtaining shape from shading information. In P. H. Winston, editor, The Psychology of Computer Vision, pages 115-155. McGraw-Hill, New York, NY, 1975.

[539]
B. K. P. Horn. Understanding image intensities. Artificial Intelligence, 8:201-231, 1977.

[540]
B. K. P. Horn. Exact reproduction of colored images. Computer Vision, Graphics, and Image Processing, 26:135-167, 1984.

[541]
B. K. P. Horn. Robot vision. MIT Press, Cambridge, Mass., 1986.

[542]
D. H. Hubel and T. N. Wiesel. Ferrier Lecture: Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B, 1977:1-59.

[543]
D. H. Hubel and T. N. Wiesel. Receptive fields of single neurons in the cat's striate cortex. J. Physiol., 148:574-591, 1959.

[544]
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol., 160:106-154, 1962.

[545]
D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. London, 195:215-243, 1968.

[546]
P. J. Huber. Projection pursuit (with discussion). The Annals of Statistics, 13:435-475, 1985.

[547]
J. F. Hughes. Scheduled Fourier volume morphing. Computer Graphics, 26:43-46, 1992.

[548]
D. Hume. An enquiry concerning human understanding. The Internet, 1748. available electronically at URL gopher://gopher.vt.edu:10010/11/101/1.

[549]
J. E. Hummel and I. Biederman. Dynamic binding: a basis for the representation of shape by neural networks. In Proc. 12th Annual Conference of the Cognitive Science Society, pages 614-621, Hillsdale, NJ, 1990. Erlbaum.

[550]
J. E. Hummel and I. Biederman. Dynamic binding in a neural network for shape recognition. Psychological Review, 99:480-517, 1992.

[551]
R. A. Hummel and S. W. Zucker. On the foundations of relaxation labeling processes. In M. A. Fischler and O. Firschein, editors, Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pages 585-605. Kaufmann, Los Altos, CA., 1987.

[552]
G. K. Humphrey and S. C. Khan. Recognizing novel views of three-dimensional objects. Can. J. Psychol., 46:170-190, 1992.

[553]
G. W. Humphreys and P. Quinlan. Normal and pathological processes in visual object constancy. In G. W. Humphreys and M. J. Riddoch, editors, Visual object processing: a cognitive neuropsychological approach, pages 43-106. Erlbaum, Hillsdale, NJ, 1987.

[554]
G. W. Humphreys and M. J. Riddoch, editors. Visual object processing: a cognitive neuropsychological approach. Erlbaum, Hillsdale, NJ, 1987.

[555]
D. C. D. Hung. Enhancement and feature purification of fingerprint images. Pattern Recognition, 26:1661-1671, 1993.

[556]
A. C. Hurlbert, H.-C. Lee, and H. H. Bülthoff. Cues to the color of the illuminant. Invest. Ophthalm. Vis. Science Suppl., 30:221, 1989.

[557]
A. Hurlbert and T. Poggio. Do computers need attention? Nature, 321(12), 1986.

[558]
A. Hurlbert and T. Poggio. Learning a color algorithm from examples. A.I. Memo No. 909, CBIP Paper 25, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Ma., 1987.

[559]
A. Hurlbert and T. Poggio. Synthesizing a color algorithm from examples. Science, 239:482-485, 1988.

[560]
A. C. Hurlbert and T. Poggio. Learning a color algorithm from examples. In Neural Information Processing Systems: Proceedings of the Neural Information Processing Conference, pages 622-631, New York, NY, 1988. American Institute of Physics.

[561]
A. C. Hurlbert and T. Poggio. Making machines (and AI) see. Daedalus, 117:213-239, 1988.

[562]
A. C. Hurlbert. The computation of color. PhD thesis, MIT, 1989.

[563]
J. Hutchinson, C. Koch, J. Luo, and C. Mead. Computing motion using analog and binary resistive networks. IEEE Computer Magazine, 21:52-64, 1988.

[564]
D. P. Huttenlocher and S. Ullman. Object recognition using alignment. In Proceedings of the 1st International Conference on Computer Vision, pages 102-111, London, England, June 1987. IEEE, Washington, DC.

[565]
K. Ikeuchi and B. K. P. Horn. Numerical shape from shading and occluding boundaries. Artificial Intelligence, 15:141-184, 1981.

[566]
K. Ikeuchi and T. Kanade. Applying sensor models to automatic generation of object recognition programs. In Proceedings of the 2nd International Conference on Computer Vision, pages 228-237, Tarpon Springs, FL, 1988.

[567]
N. Intrator, J. I. Gold, H. H. Bülthoff, and S. Edelman. Three-dimensional object recognition using an unsupervised neural network: understanding the distinguishing features. In J. Moody, S. J. Hanson, and R. L. Lippman, editors, Neural Information Processing Systems, volume 4, pages 460-467. Morgan Kaufmann, San Mateo, CA, 1992.

[568]
N. Intrator, D. Reisfeld, and Y. Yeshurun. Exploratory projection pursuit feature extraction for face recognition. 1992. in preparation.

[569]
N. Intrator, S. Edelman, and H. H. Bülthoff. An integrated approach to the study of object features in visual recognition. Network, 6:603-618, 1995.

[570]
N. Intrator and L. N. Cooper. Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks, 5:3-17, 1992.

[571]
N. Intrator and S. Edelman. How to make a low-dimensional representation suitable for diverse tasks. Connection Science, 8:205-224, 1996.

[572]
N. Intrator and S. Edelman. Learning low dimensional representations of visual objects with extensive use of prior knowledge. Network, 1997. in press.

[573]
N. Intrator and J. Gold. Three-dimensional object recognition in gray-level images: the usefulness of distinguishing features. Neural Computation, 5:61-74, 1993.

[574]
N. Intrator and G. Tajchman. Supervised and unsupervised feature extraction from a cochlear model for speech recognition. In B. H. Juang, S. Y. Kung, and C. A. Kamm, editors, Neural Networks for Signal Processing -- Proceedings of the 1991 IEEE Workshop, pages 460-469. IEEE Press, New York, NY, 1991.

[575]
N. Intrator. A neural network for feature extraction. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 719-726. Morgan Kaufmann, San Mateo, CA, 1990.

[576]
N. Intrator. Unsupervised adaptive classification of gray-scale images of 3D objects, 1990. Brown University TR, in preparation.

[577]
N. Intrator. Localized exploratory projection pursuit. In Ed Wegman, editor, Computer Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pages 237-240. Amer. Statist. Assoc., Washington, DC., 1991.

[578]
N. Intrator. Feature extraction using an unsupervised neural network. Neural Computation, 4:98-107, 1992.

[579]
N. Intrator. Combining Exploratory Projection Pursuit and Projection Pursuit Regression. Neural Computation, 5:443-455, 1993.

[580]
M. Ito, H. Tamura, I. Fujita, and K. Tanaka. Size and position invariance of neuronal responses in monkey inferotemporal cortex. J. Neurophysiol., 73:218-226, 1995.

[581]
R. Jackendoff. Consciousness and the computational mind. MIT Press, Cambridge, MA, 1989.

[582]
D. W. Jacobs. The use of grouping in visual object recognition. TR 1023, MIT, January 1988.

[583]
D. W. Jacobs. The space requirements of indexing under perspective projections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:330-333, 1996.

[584]
A. Jampolsky. Ocular divergence mechanisms. Trans. Amer. Ophthalm. Soc., 68:730-822, 1970.

[585]
J. Jastrow. The time relations of mental phenomena. Hodges, New York, 1890.

[586]
W. M. Jenkins, M. M. Merzenich, and M. T. Ochs. Behaviorally controlled differential use of restricted hand surfaces induces changes in the cortical representation of the hand in area 3b of adult owl monkeys. Soc. Neurosci. Abstr., 10:665, 1984.

[587]
J. Joerges, A. Küttner, C. G. Galizia, and R. Menzel. Representations of odors and odor mixtures visualized in the honeybee brain. Nature, 387:285-288, 1997.

[588]
G. Johansson. Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14:201-211, 1973.

[589]
W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26:189-206, 1984.

[590]
P. Jolicoeur, M. Gluck, and S. M. Kosslyn. Pictures and names: making the connection. Cognitive Psychology, 16:243-275, 1984.

[591]
P. Jolicoeur, S. Ullman, and M. Mackay. Curve tracing: a possible basic operation in the perception of spatial relations. Memory and Cognition, 14:129-140, 1986.

[592]
P. Jolicoeur, S. Ullman, and M. Mackay. Visual curve tracing properties. Journal of Experimental Psychology: Human Perception and Performance, 17:997-1022, 1991.

[593]
P. Jolicoeur and G. K. Humphrey. Perception of rotated two-dimensional and three-dimensional objects and visual shapes. In V. Walsh and J. Kulikowski, editors, Perceptual constancies, chapter 10. Cambridge University Press, Cambridge, UK, 1997. in press.

[594]
P. Jolicoeur and S. M. Kosslyn. Coordinate systems in the long-term memory representation of three-dimensional shapes. Cognitive Psychology, 15:301-345, 1983.

[595]
P. Jolicoeur and M. J. Landau. Effects of orientation on the identification of simple visual patterns. Canadian Journal of Psychology, 38:80-93, 1984.

[596]
P. Jolicoeur and B. Milliken. Identification of disoriented objects: effects of context of prior presentation. J. Exp. Psychol.: LMC, 15:200-210, 1989.

[597]
P. Jolicoeur. The time to name disoriented objects. Memory and Cognition, 13:289-303, 1985.

[598]
P. Jolicoeur. Identification of disoriented objects: a dual-systems theory. Mind and Language, 5:387-410, 1990.

[599]
D. G. Jones and J. Malik. A computational framework for determining stereo correspondence from a set of linear spatial filters. In G. Sandini, editor, Proc. ECCV-92, pages 395-410, Berlin, 1992. Springer.

[600]
M. I. Jordan and D. E. Rumelhart. Supervised learning with a distal teacher. Cognitive Science, 16:307-354, 1992.

[601]
K. Jöreskog and H. Wold. Systems under indirect observation: causality, structure, prediction. North-Holland, Amsterdam, 1982.

[602]
D. B. Judd, D. L. MacAdam, and G. Wyszecki. Spectral distribution of typical daylight as a function of correlated color temperature. Journal of the Optical Society of America, 54:1031-1040, 1964.

[603]
B. Julesz and J. R. Bergen. Textons, the fundamental elements in preattentive vision and perception of textures. Bell System Tech. Journal, 62:1619-1645, 1983.

[604]
B. Julesz. Foundations of Cyclopean perception. University of Chicago Press, Chicago, IL, 1971.

[605]
B. Julesz. Experiments in the visual perception of texture. Scientific American, 232:34-43, 1975.

[606]
B. Julesz. Spatial frequency channels in one- two- and three-dimensional vision: variations on a theme by Bekesy. In C. Harris, editor, Visual Coding and Adaptability. Erlbaum, Hillsdale, NJ, 1980.

[607]
B. Julesz. Textons: the elements of texture perception, and their interactions. Nature, 290:91-97, 1981.

[608]
B. Julesz. A theory of preattentive texture discrimination based on first-order statistics of textons. Biological Cybernetics, 41:131-138, 1981.

[609]
B. Julesz. A brief outline of the texton theory of human vision. Trends in Neurosciences, 7:41-45, 1984.

[610]
N. Jungman, A. Levi, A. Aperman, and S. Edelman. Automatic classification of police mugshot album using principal component analysis. In S. K. Rogers and D. W. Ruck, editors, Proc. SPIE-2243 Conference on Applications of Artificial Neural Networks, pages 591-594, Orlando, FL, 1994.

[611]
J. H. Kaas. Why does the brain have so many visual areas? Journal of Cognitive Neuroscience, 1:121-135, 1989.

[612]
S. Kahan, T. Pavlidis, and H. S. Baird. On the recognition of printed characters of any font and size. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9:274-287, 1987.

[613]
Y. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual information. CS-TR 94-04, Weizmann Institute of Science, 1994. also in Proc. Intl. Conf. on Robotics and Automation, Minneapolis, April 1996.

[614]
T. Kanade and J. R. Kender. Mapping image properties into image constraints: skewed symmetry, affine-transformable patterns and the shape from texture paradigm. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and machine vision, pages 237-258, New York, 1983. Academic Press.

[615]
K. Kanatani. Group-theoretical methods in image understanding. Springer, Berlin, 1990.

[616]
E. R. Kandel and J. H. Schwartz. Principles of neural science. Elsevier, New York, 1985.

[617]
N. Kanwisher, M. M. Chun, J. McDermott, and P. J. Ledden. Functional imaging of human visual recognition, 1996.

[618]
A. Karni, D. Tanne, B. S. Rubinstein, J. J. Ashkenazi, and D. Sagi. No dreams -- no memory: the effect of rem sleep deprivation on learning a new perceptual skill. Soc. Neurosci. Abstr., 18, 1992.

[619]
A. Karni and D. Sagi. Human texture discrimination learning --- evidence for low-level neuronal plasticity in adults. Perception, 19:335, 1990.

[620]
A. Karni and D. Sagi. Where practice makes perfect in texture discrimination. Proceedings of the National Academy of Science, 88:4966-4970, 1991.

[621]
A. Karni. The acquisition of perceptual and motor skills: a memory system in the adult human cortex. Cognitive Brain Research, 5:39-48, 1996.

[622]
Y. Karov and S. Edelman. Learning similarity-based word sense disambiguation from sparse data. CS-TR 96-05, The Weizmann Institute of Science, March 1996. J. Computational Linguistics, 1997, in press; a short version appeared also in Proc. 4th Intl. Workshop on Large Corpora, Copenhagen, 1996.

[623]
M. Kass and A. Witkin. Analyzing oriented patterns. In W. Richards, editor, Natural computation, pages 252-265. MIT Press, Cambridge, MA, 1988.

[624]
L. C. Katz and E. M. Callaway. Development of local circuits in mammalian visual cortex. Ann. Rev. Neurosci., 15:31-56, 1992.

[625]
N. Kawabata and T. Mori. Disambiguating ambiguous figures by a model of selective attention. Biological Cybernetics, 67:417-426, 1992.

[626]
M. Kawato, H. Hayakawa, and T. Inui. A forward-inverse optics model of reciprocal connections between visual cortical areas. Network, 4:415-422, 1993.

[627]
R. Kazman. Simulating the child's acquisition of the lexicon and syntax - experiences with babel. Machine Learning, 16:87-120, 1994. special issue on computational models of human learning.

[628]
S. W. Keele and W. Trammer Neill. Mechanisms of attention. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume IX, pages 3-47. Academic Press, New York, NY, 1978.

[629]
F. C. Keil. Concepts, kinds and cognitive development. MIT Press, Cambridge, MA, 1989.

[630]
D. G. Kendall. Shape manifolds, Procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc., 16:81-121, 1984.

[631]
D. G. Kendall. A survey of the statistical theory of shape. Statistical Science, 4:87-120, 1989.

[632]
J. R. Kender. Shape from texture: An aggregation transform that maps a class of textures into surface orientation. In Proc. IJCAI, 1979.

[633]
D. Kersten, H. H. Bülthoff, B. L. Schwartz, and K. J. Kurtz. Interaction between transparency and structure from motion. Neural Computation, 4:573-589, 1992.

[634]
B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Toward a computational theory of shape. In O. Faugeras, editor, Proc. ECCV-90, pages 402-407, Berlin, 1990. Springer-Verlag.

[635]
M. Kirby and L. Sirovich. Application of the Karhunen-Loève procedure for characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):103-108, 1990.

[636]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671-680, 1983.

[637]
K. Kirschfeld. Neuronal oscillations and synchronized activity in the central nervous system: functional aspects. Psycoloquy, 6(36), December 1995. available electronically as ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/1995.volume.6/psyc.95.6.36.bra% in-rhythms.11.kirschfeld.

[638]
S. A. Klein and D. M. Levi. Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. Journal of the Optical Society of America, A2:1170-1190, 1985.

[639]
V. C. Klema and A. J. Laub. The singular value decomposition: its computation and some applications. IEEE Trans. Auto. Control, 25:164-176, 1980.

[640]
D. C. Knill and D. Kersten. Learning a near-optimal estimator for surface shape from shading. Computer Vision, Graphics, and Image Processing, 50:75-100, 1990.

[641]
D. C. Knill and D. Kersten. Ideal perceptual observers for computation, psychophysics and neural networks. In R. Watt, editor, Vision and visual dysfunction, volume 14, chapter 7, pages 83-97. Macmillan, London, 1991.

[642]
E. Kobatake, K. Tanaka, and Y. Tamori. Long-term learning changes the stimulus selectivity of cells in the inferotemporal cortex of adult monkeys. Neuroscience Research, S17:237, 1992.

[643]
E. Kobatake and K. Tanaka. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol., 71:2269-2280, 1994.

[644]
C. Koch and T. Poggio. Biophysics of computational systems: Neurons, synapses, and membranes. In G. M. Edelman, W. E. Gall, and W. M. Cowan, editors, Synaptic Function, pages 637-697. Wiley, New York, NY, 1987.

[645]
C. Koch and I. Segev. Methods in neuronal modeling. MIT Press, Cambridge, MA, 1989.

[646]
C. Koch and S. Ullman. Selecting one among the many: a simple network implementing shifts in selective visual attention. Human Neurobiology, 4:219-227, 1985.

[647]
J. J. Koenderink, A. J. van Doorn, and A. M. L. Kappers. Depth and viewing conditions: pictures versus real scenes. Perception, 22 (suppl.):98, August 1993. Proc. ECVP'93.

[648]
J. J. Koenderink, A. J. van Doorn, and A. M. L. Kappers. Pictorial surface attitude and local depth comparisons. Perception and Psychophysics, 58:163-173, 1996.

[649]
J. J. Koenderink and A. J. van Doorn. Local structure of movement parallax of the plane. Journal of the Optical Society of America, 66:717-723, 1976.

[650]
J. J. Koenderink and A. J. van Doorn. The internal representation of solid shape with respect to vision. Biological Cybernetics, 32:211-217, 1979.

[651]
J. J. Koenderink and A. J. van Doorn. The shape of smooth objects and the way contours end. Perception, 11:129-137, 1981.

[652]
J. J. Koenderink and A. J. van Doorn. Depth and shape from differential perspective in the presence of bending deformations. Journal of the Optical Society of America, 3:242-249, 1986.

[653]
J. J. Koenderink and A. J. van Doorn. Optic flow. Vision Research, 26:161-180, 1986.

[654]
J. J. Koenderink and A. J. van Doorn. Receptive field families. Biological Cybernetics, 63:291-297, 1990.

[655]
J. J. Koenderink and A. J. van Doorn. Affine structure from motion. Journal of the Optical Society of America, 8(2):377-385, 1991.

[656]
J. J. Koenderink. What does the occluding contour tell us about solid shape? Perception, 13:321-330, 1984.

[657]
J. J. Koenderink. Solid Shape. MIT Press, Cambridge, MA, 1990.

[658]
W. Köhler. Gestalt psychology. Liveright, New York, 1947.

[659]
T. Kohonen. Associative memory: a system theoretic approach. Springer-Verlag, Berlin, 1978.

[660]
T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59-69, 1982.

[661]
W. L. G. Koontz and K. Fukunaga. A nonlinear feature extraction algorithm using distance information. IEEE Trans. Comput., 21:56-63, 1972.

[662]
A. Koriat and M. Goldsmith. Memory metaphors and the laboratory/real-life controversy: correspondence versus storehouse views of memory. Behavior and Brain Sciences, 1995. in press.

[663]
A. Koriat and J. Norman. Mental rotation and visual familiarity. Perception and Psychophysics, 37:429-439, 1985.

[664]
H. Kornblith. Inductive inference and its natural ground. MIT Press, Cambridge, MA, 1993.

[665]
S. M. Kosslyn. Image and mind. Harvard Univ. Press, Cambridge, MA, 1980.

[666]
A. F. Kramer, D. L. Strayer, and J. Buckley. Development and transfer of automatic processing. Journal of Experimental Psychology: Human Perception and Performance, 16:505-522, 1990.

[667]
B. J. A. Kröse and P. P. van der Smagt. An introduction to neural networks. U. of Amsterdam, Amsterdam, 1993.

[668]
C. L. Krumhansl. Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychological Review, 85:445-463, 1978.

[669]
John K. Kruschke. ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99(1):22-44, 1992.

[670]
S. L. Krushkal'. Quasiconformal mappings and Riemann surfaces. Wiley, New York, 1979.

[671]
J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage Piblications, Beverly Hills, CA, 1978.

[672]
J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.

[673]
J. B. Kruskal. Non-metric multidimensional scaling: a numerical method. Psychometrika, 29:115-129, 1964.

[674]
J. B. Kruskal. The relationship between multidimensional scaling and clustering. In J. Van Ryzin, editor, Classification and clustering, pages 17-44. Academic Press, New York, 1977.

[675]
S. W. Kuffler and J. G. Nicholls. From neuron to brain. Sinauer, Sunderland, MA, 1976.

[676]
S. W. Kuffler. Discharge patterns and functional organization of mammalian retina. J. Neurophysiology, 16:37-68, 1953.

[677]
P. K. Kuhl. Human adults and human infants show a &puml;erceptual magnet effect¨ for the prototypes of speech categories, monkeys do not. Perception and Psychophysics, 50:93-107, 1991.

[678]
J. Kulikowski, S. Marcelja, and P. O. Bishop. Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. Biological Cybernetics, 43:187-198, 1982.

[679]
M. Kuperstein. Neural model of adaptive hand-eye coordination for single postures. Science, 239:1308-1311, 1988.

[680]
M. A. Kurbat. Is RBC/JIM a general-purpose theory of human entry-level object recognition? Perception, 23:1339-1368, 1994.

[681]
D. LaBerge. Perceptual learning and attention. In W. K. Estes, editor, Handbook of learning and cognitive processes, volume 4, pages 237-273. Erlbaum, Hillsdale, NJ, 1976.

[682]
J. Lachter and M. Hayhoe. Capacity limitations in memory for visual locations. Perception, 24:1427-1442, 1995.

[683]
Y. Lamdan and H. Wolfson. Geometric hashing: a general and efficient recognition scheme. In Proceedings of the 2nd International Conference on Computer Vision, pages 238-251, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[684]
E. H. Land and J. J. McCann. Lightness and retinex theory. Journal of the Optical Society of America, 61:1-11, 1971.

[685]
E. H. Land. An alternative technique for the computation of the designator in the retinex theory of color vision. Proceedings of the National Academy of Science, 83:3078-3080, 1986.

[686]
B. Landau, L. B. Smith, and S. Jones. The importance of shape in early lexical learning. Cognitive Development, 3:299-321, 1988.

[687]
M. Lando and S. Edelman. Generalization from a single view in face recognition. CS-TR 95-02, Weizmann Institute of Science, 1995.

[688]
M. Lando and S. Edelman. Receptive field spaces and class-based generalization from a single view in face recognition. Network, 6:551-576, 1995.

[689]
M. Lando. A computational model of upright and inverted human face recognition. Master's thesis, Feinberg Graduate School of the Weizmann Institute of Science, Rehovot, Israel, November 1994.

[690]
M. S. Landy. Parallel model of the kinetic depth effect using local computations. Journal of the Optical Society of America, 4:864-877, 1987.

[691]
R. W. Langacker. Concept, Image, and Symbol: The Cognitive Basis of Grammar. Mouton de Gruyter, Berlin, 1990.

[692]
J. S. Lappin, J. Farley Norman, and L. Mowafy. The detectability of geometric structure in rapidly changing optical patterns. Perception, 20:513-528, 1991.

[693]
A. Larsen. Pattern matching: effects of size ratio, angular difference in orientation and familiarity. Perception and Psychophysics, 38:63-68, 1985.

[694]
R. Lawson, G. Humphreys, and D. G. Watson. Object recognition under sequential viewing conditions: evidence for viewpoint-specific recognition procedures. Perception, 23:595-614, 1994.

[695]
R. Lawson and G. W. Humphreys. View specificity in object processing: evidence from picture matching. Journal of Experimental Psychology: Human Perception and Performance, 22:395-416, 1996.

[696]
H. Le and D. G. Kendall. The Riemannian structure of Euclidean shape spaces: a novel environment for statistics. The Annals of Statistics, 21:1221-1271, 1993.

[697]
H. Le. On geodesics in Euclidean shape spaces. J. Lond. Math. Soc., 44:360-372, 1991.

[698]
Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series. In M. A. Arbib, editor, The handbook of brain theory and neural networks, pages 255-258. MIT Press, 1995.

[699]
S. Lee and J. C. Pan. Offline tracing and representation of signatures. IEEE Trans. SMC, 22:755-771, 1992.

[700]
H.-C. Lee. Method for computing the scene-illuminant chromaticity from specular highlights. Journal of the Optical Society of America, 3:1694-1699, 1986.

[701]
T. K. Leen and N. Kambhatla. Fast non-linear dimension reduction. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems, volume 6, pages 152-159. Morgan Kauffman, San Francisco, CA, 1994.

[702]
E. Leeuwenberg and F. Boselie. Against the likelihood principle in visual form perception. Psychological Review, 95:485-491, 1989.

[703]
S. Lem. Star Diaries. Harcourt Brace Jovanovich, New York, 1985.

[704]
J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. What the frog's eye tells the frog's brain. Proc. IRE, 47:1940-1959, 1959.

[705]
D. M. Levi and S. Klein. Hyperacuity and amblyopia. Nature, 298:268-270, 1982.

[706]
D. M. Levi and S. Klein. Spatial localization in normal and amblyopic vision. Vision Research, 23:1005-1017, 1983.

[707]
D. M. Levi and S. Klein. Vernier acuity, crowding and amblyopia. Vision Research, 25:979-991, 1985.

[708]
L. Li, E. K. Miller, and R. Desimone. The representation of stimulus familiarity in anterior inferior temporal cortex. J. of Neurophysiology, 69:1918-1929, 1993.

[709]
L. L. Light, F. Kayra-Stuart, and S. Hollander. Recognition memory for typical and unusual faces. Journal of Experimental Psychology: Human Learning and Memory, 5:212-228, 1979.

[710]
W. Lim, editor. Proc. AAAI-90 Workshop on Qualitative Vision. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[711]
S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21:498-516, 1973.

[712]
J.-H. Lin and J. S. Vitter. Complexity results on learning by neural nets. Machine Learning, 6:211-230, 1991.

[713]
Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, COM-28:84-95, 1980.

[714]
P. H. Lindsay and D. A. Norman. Human information processing: an introduction to psychology. Academic Press, New York, 1977.

[715]
N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. FOCS, 35:577-591, 1994.

[716]
R. Linsker. Perceptual neural organization: some approaches based on network models and information theory. Ann. Rev. Neurosci., 13:257-281, 1990.

[717]
R. Linsker. Self-organization in a perceptual network. IEEE Computer, 21:105-117, March 1988.

[718]
J. J. Little, T. Poggio, and E. B. Gamble Jr. Seeing in parallel: The vision machine. International Journal of Supercomputing Applications, 2:13-28, 1988.

[719]
N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.

[720]
Z. Liu, D. C. Knill, and D. Kersten. Object classification for human and ideal observers. Vision Research, 35:549-568, 1995.

[721]
J. Locke. An essay concerning human understanding. Modern Library, New York, 1690/1994.

[722]
G. Logan. Towards an instance theory of automatization. Psychological Review, 95:492-527, 1988.

[723]
N. K. Logothetis, J. Pauls, T. Poggio, and H. H. Bülthoff. View dependent object recognition by monkeys. Current Biology, 4:404-41, 1994.

[724]
N. K. Logothetis, J. Pauls, and T. Poggio. Shape recognition in the inferior temporal cortex of monkeys. Current Biology, 5:552-563, 1995.

[725]
N. K. Logothetis and D. L. Scheinberg. Visual object recognition. Annual Review of Neuroscience, 19:577-621, 1996.

[726]
C. M. Lombardi and J. D. Delius. Size invariance in visual pattern recognition by pigeons. In M. L. Commons, R. J. Herrnstein, S. M. Kosslyn, and D. B. Mumford, editors, Quantitative analyses of behavior, volume VIII. Erlbaum, Hillsdale, NJ, 1990.

[727]
H. C. Longuet-Higgins and K. Prazdny. The interpretation of a moving retinal image. Proceedings of the Royal Society of London B, 208:385-397, 1980.

[728]
H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133-135, 1981.

[729]
H. C. Longuet-Higgins. Recognizing three dimensions. Nature, 343:214-215, 1990.

[730]
David G. Lowe and Thomas O. Binford. The Recovery of Three-Dimensional Structure from Image Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(3):320-326, 1985.

[731]
D. G. Lowe. Perceptual organization and visual recognition. Kluwer Academic Publishers, Boston, MA, 1986.

[732]
D. G. Lowe. Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence, 31:355-395, 1987.

[733]
D. G. Lowe. Stabilized solution for 3D model parameters. In O. Faugeras, editor, Proc. European Conference on Computer Vision, pages 408-412, New York, 1990. Springer.

[734]
R. D. Luce. Response times: their role in inferring elementary mental organization. Oxford University Press, Oxford, 1986.

[735]
J. S. Lund, T. Yoshioka, and J. B. Levitt. Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cerebral Cortex, 3:148-162, 1993.

[736]
M. C. MacDonald, N. J. Pearlmutter, and M. S. Seidenberg. Lexical nature of syntactic ambiguity resolution. Psych. Rev., 101:676-703, 1994.

[737]
N. J. Mackintosh. Categorization by people and pigeons: The twenty-second Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 48B:193-210, 1995.

[738]
J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symposium, 1:281-297, 1967.

[739]
W. T. Maddox and F. G. Ashby. Comparing decision bound and exemplar models of categorization. Perception and Psychophysics, 53:49-70, 1993.

[740]
L. Maffei. Spatial frequency channels: neural mechanisms. In R. Held, H. W. Leibowitz, and H.-L. Teuber, editors, Handbook of sensory physiology: Perception, chapter 2, pages 39-68. Springer-Verlag, Berlin, 1978.

[741]
R. Malach, Y. Amir, E. Bartfeld, and A. Grinvald. Biocytin injections, guided by optical imaging, reveal relationships between functional architecture and intrinsic connections in monkey visual cortex. Soc. Neurosci. Abstr., 18, 1992.

[742]
R. Malach, J. B. Reppas, R. R. Benson, K. K. Kwong, J. Jiang, W. A. Kennedy, P. J. Ledden, T. J. Brady, B. R. Rosen, and R. B. H. Tootell. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Science, 92:8135-8139, August 1995.

[743]
H. A. Mallot, W. von Seelen, and F. Giannakopoulos. Neural mapping and space-variant image processing. Neural Networks, 3:245-263, 1990.

[744]
H. A. Mallot, H. H. Bülthoff, J. J. Little, and S. Bohrer. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics, 64:177-185, 1991.

[745]
H. A. Mallot, H. H. Bülthoff, and J. J. Little. Neural architecture for optical flow computation. A.I. Memo No. 1067, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, March 1989.

[746]
L. T. Maloney and M. S. Landy. A statistical framework for robust fusion of depth information. In Proc. SPIE: Visual Communications and Image Processing, pages 1154-1163, 1989. Part 2.

[747]
L. T. Maloney and B. Wandell. A computational model of color constancy. Journal of the Optical Society of America, 1:29-33, 1986.

[748]
L. T. Maloney. Computational approaches to color vision. PhD thesis, Stanford Univ., Stanford, CA, 1984.

[749]
R. S. Malpass and K. D. Hughes. Formation of facial prototypes. In H. D. Ellis, M. A. Jeeves, and F. Newcombe, editors, Aspects of face processing, pages 154-162. Martinus Nijhoff, Dordrecht, 1986.

[750]
F. Manolache and S. Edelman. Generation of natural-looking 3D shapes by simulated evolution. CS-TR 93-13, Weizmann Institute of Science, July 1993. URL http://eris.wisdom.weizmann.ac.il/pub/animal-evolution.ps.Z.

[751]
J. Margolis. The truth about relativism. Basil Blackwell, Oxford, UK, 1991.

[752]
T. Marill. Recognizing 3D objects without the use of models. A.I. Memo No. 1157, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[753]
A. Markman and D. Gentner. Structural alignment during similarity comparisons. Cognitive Psychology, 25:431-467, 1993.

[754]
E. Markman. Categorization and naming in children. MIT Press, Cambridge, MA, 1989.

[755]
L. E. Marks. The slippery context effect in psychophysics: intensive, extensive, and qualitative continua. Perception and Psychophysics, 51:187-198, 1992.

[756]
D. Marr, T. Poggio, and E. Hildreth. Smallest channel in early human vision. Journal of the Optical Society of America, 70:868-870, 1980.

[757]
D. Marr and E. Hildreth. Theory of edge detection. Proc. R. Soc. Lond. B, 207:187-217, 1980.

[758]
D. Marr and H. K. Nishihara. Representation and recognition of the spatial organization of three dimensional structure. Proceedings of the Royal Society of London B, 200:269-294, 1978.

[759]
D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 194:283-287, 1976.

[760]
D. Marr and T. Poggio. From understanding computation to understanding neural circuitry. Neurosciences Res. Prog. Bull., 15:470-488, 1977.

[761]
D. Marr and T. Poggio. A computational theory of human stereo vision. Proceedings of the Royal Society of London B, 204:301-328, 1979.

[762]
D. Marr and S. Ullman. Directional selectivity and its use in early visual processing. Proceedings of the Royal Society of London B, 211:151-180, 1981.

[763]
D. Marr. A theory of cerebellar cortex. J. Physiol., 202:437-470, 1969.

[764]
D. Marr. A theory for cerebral neocortex. Proceedings of the Royal Society of London B, 176:161-234, 1970.

[765]
D. Marr. Simple memory: a theory for archicortex. Phil. Trans. Royal Soc. London, 262:23-81, 1971.

[766]
D. Marr. The computation of lightness by the primate retina. Vision Research, 14:1377-1388, 1974.

[767]
D. Marr. Early processing of visual information. Phil. Trans. R. Soc. Lond. B, 275:483-524, 1976.

[768]
D. Marr. Analysis of occluding contour. Proc. R. Soc. Lond. B, 197:441-475, 1977.

[769]
D. Marr. Vision. W. H. Freeman, San Francisco, CA, 1982.

[770]
J. Marroquin, S. Mitter, and T. Poggio. Probabilistic solution of ill-posed problems in computational vision. Journal of the American Statistical Association, 82:76-89, 1987.

[771]
W. D. Marslen-Wilson, M. Ford, L. Older, and Z. Xiaolin. The combinatorial lexicon: priming derivational affixes. In G. W. Cottrell, editor, Proc. of the 18th annual conf. of the Cognitive Science Society, pages 223-227, Hillsdale, NJ, 1996. Erlbaum.

[772]
J. D. Martin and D. O. Billman. Acquiring and combining overlapping concepts. Machine Learning, 16:121-155, 1994. special issue on computational models of human learning.

[773]
T. Martinetz, H. Ritter, and K. Schulten. Three-dimensional neural net for learning visuomotor coordination of a robot arm. 1:131-136, 1990.

[774]
J. H. R. Maunsell. Functional visual streams. Current Opinion in Neurobiology, 2:506-510, 1992.

[775]
J. E. W. Mayhew and J. P. Frisby. Psychophysical and computational studies towards a theory of human stereopsis. Artificial Intelligence, 17:349-386, 1981.

[776]
S. Mazur and S. Ulam. Sur les transformations isométriques vectoriels normés. C. R. Acad. Sci. Paris, 194:946-948, 1932.

[777]
C. McCollough. Color adaptation of edge detectors in the human visual system. Science, 149:1115-1116, 1965.

[778]
J. McCollum, J. Larson, T. Otto, F. Schottler, R. Granger, and G. Lynch. Short-latency single-unit processing in olfactory cortex. Journal of Cognitive Neuroscience, 3:293-299, 1991.

[779]
W. S. McCulloch. Brain and behavior. In W. C. Halstead, editor, Comparative Psychology Monograph, volume 20, pages 39-50. U. of Calif. Press, Berkeley, CA, 1950.

[780]
W. S. McCulloch. Embodiments of mind. MIT Press, Cambridge, MA, 1965.

[781]
S. P. McKee and G. Westheimer. Improvement in vernier acuity with practice. Perception and Psychophysics, 24:258-262, 1978.

[782]
S. C. McKinley and R. M. Nosofsky. Selective attention and the formation of linear decision boundaries. Journal of Experimental Psychology: Human Perception and Performance, 22:294-317, 1996.

[783]
I. P. L. McLaren, H. J. Leevers, and N. J. Mackintosh. Recognition, categorization, and perceptual learning (or, how learning to classify things together helps one to tell them apart). In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 35, pages 889-909. MIT Press, 1994.

[784]
B. L. McNaughton and R. G. M. Morris. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10:408-415, 1987.

[785]
D. L. Medin, R. L. Goldstone, and D. Gentner. Respects for similarity. Psychological Review, 100:254-278, 1993.

[786]
D. L. Medin and M. M. Schaffer. Context theory of classification learning. Psychological Review, 85:207-238, 1978.

[787]
G. G. Medioni and R. Nevatia. Segment-based stereo matching. Computer Vision, Graphics, and Image Processing, 31:2-18, 1985.

[788]
B. W. Mel and C. Koch. Sigma-Pi learning: on radial basis functions and cortical associative learning. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 474-481. Morgan Kaufmann, San Mateo, CA, 1990.

[789]
B. Mel. A connectionist model may shed light on neural mechanisms for visually guided reaching. J. of Cognitive Neuroscience, 3:273-292, 1991.

[790]
B. Mel. NMDA-based pattern discrimination in a modeled cortical neuron. Neural Computation, 4:502-517, 1992.

[791]
B. Mel. SEEMORE: A view-based approach to 3-D object recognition using multiple visual cues. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8. MIT Press, Cambridge, MA, 1996.

[792]
B. Mel. SEEMORE: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Technical report, University of South California, Los Angeles, CA, January 1996.

[793]
B. Mel. SEEMORE: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation, 9:777-804, 1997.

[794]
W. Mendenhall and T. Sincich. Statistics for the engineering and computer sciences. Macmillan, London, 1988.

[795]
M. M. Merzenich, G. Recanzone, W. M. Jenkins, T. T. Allard, and R. J. Nudo. Cortical representation plasticity. In P. Rakic and W. Singer, editors, Neurobiology of Neocortex, pages 41-68. Wiley, New York, NY, 1988.

[796]
M-M. Mesulam, editor. Principles of behavioral neurology. Davis, Philadelphia, PA, 1986.

[797]
C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx., 2:11-22, 1986.

[798]
R. E. Miles. A survey of geometric probability in the plane, with emphasis on stochastic image modeling. In A. Rosenfeld, editor, Image Modeling, pages 277-300. Academic Press, New York, 1981.

[799]
E. K. Miller, L. Li, and R. Desimone. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neuroscience, 13:1460-1478, 1993.

[800]
E. K. Miller and R. Desimone. Parallel neuronal mechanisms for short-term memory. Science, 263:520-522, 1994.

[801]
J. Miller and P. Eimas. Feature detectors and speech perception: a critical evaluation. In D. Albrecht, editor, Recognition of Pattern and Form (Lecture Notes in Biomathematics), volume 44, pages 111-145. Springer, Berlin, 1979.

[802]
K. D. Miller. Correlation-based mechanisms of neural development. In M. A. Gluck and D. E. Rumelhart, editors, Neuroscience and Connectionist Theory, pages 267-353. Erlbaum, Hillsdale NJ, 1990.

[803]
R. Millikan. Language, Thought, and Other Biological Categories. MIT Press, Cambridge, MA, 1984.

[804]
R. Millikan. White Queen Psychology and other essays for Alice. MIT Press, Cambridge, MA, 1995.

[805]
M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[806]
M. Minsky. A framework for representing knowledge. In P. H. Winston, editor, The psychology of computer vision. McGraw-Hill, New York, 1975.

[807]
M. Mishkin, L. G. Ungerleider, and K. A. Macko. Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 4:414-417, 1983.

[808]
G. J. Mitchison and S. P. McKee. Interpolation in stereoscopic matching. Nature, 315:402-404, 1985.

[809]
G. J. Mitchison and G. Westheimer. Viewing geometry and gradients of horizontal disparity. In C. Blakemore, editor, Vision: coding and efficiency, chapter 28, pages 302-309. Cambridge University Press, 1990.

[810]
G. Mitchison. Axonal trees and cortical architecture. Trends in Neurosciences, 15:122-126, 1992.

[811]
A. Mitiche. Computation of optical flow and rigid motion. In Proc. Workshop on Computer Vision: Representation and Control, pages 63-71, Annapolis, MD, 1984.

[812]
A. Mitiche. On kineopsis and computation of structure and motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:109-112, 1986.

[813]
H. Mitsumoto, S. Tamura, K. Okazaki, N. Kajimi, and Y. Fukui. 3D reconstruction using mirror images based on a plane symmetry recovering method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:941-946, 1992.

[814]
R. Mohan, D. Weinshall, and R. R. Sarukkai. 3D object recognition by indexing structural invariants from multiple views. In Proceedings of the 4th International Conference on Computer Vision, pages 264-268, Berlin, Germany, 1993. IEEE, Washington, DC.

[815]
G. Mohn and J. Van Hof Van Duin. Development of spatial vision. In D. Regan, editor, Vision and visual dysfunction, volume 7, chapter 4. Macmillan, London, 1991.

[816]
J. Moody and C. Darken. Fast learning in networks of locally tuned processing units. Neural Computation, 1:281-289, 1989.

[817]
J. Moran and R. Desimone. Selective attention gates visual processing in the extrastriate cortex. Science, 229:782-784, 1985.

[818]
P. Morasso. Spatial control of arm movements. Exp. Brain Res., 42:223-227, 1981.

[819]
J. Morton. Interaction of information in word recognition. Psychological Review, 76:165-178, 1969.

[820]
Y. Moses, S. Ullman, and S. Edelman. Generalization across illumination and orientation changes for inverted and upright faces. CS-TR 14, Weizmann Institute of Science, 1993. Perception, vol.25, in press (1996).

[821]
Y. Moses, Y. Adini, , and S. Ullman. Face recognition: the problem of compensating for illumination changes. In Jan-Olof Eklundh, editor, Proc. ECCV-94, pages 286-296. Springer-Verlag, 1994.

[822]
Y. Moses, S. Ullman, and S. Edelman. Generalization to novel images in upright and inverted faces. Perception, 25:443-462, 1996.

[823]
Y. Moses and S. Ullman. Limitations of non model-based recognition schemes. In G. Sandini, editor, Proc. 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, volume 588, pages 820-828, Berlin, 1992. Springer Verlag.

[824]
Y. Moses. Computational approaches in face recognition. PhD thesis, Feinberg Graduate School of the Weizmann Institute of Science, 1993.

[825]
B. C. Motter and G. F. Poggio. Binocular fixation in the Rhesus monkey: spatial and temporal characteristics. Exp. Brain Res., 54:304-314, 1984.

[826]
B. C. Motter and G. F. Poggio. Dynamic stabilization of receptive fields of cortical neurons (V1) during fixation of gaze in the macaque. Exp. Brain Res., 83:37-43, 1990.

[827]
J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome. The analysis of moving visual patterns. In C. Chagas, R. Gattas, and C. G. Gross, editors, Pattern Recognition Mechanisms. Vatican Press, Rome, 1985.

[828]
J. A. Moyne. Understanding language: man or machine. Plenum Press, New York, 1985.

[829]
D. Mumford. Mathematical theories of shape: do they model perception? In Geometric methods in computer vision, volume 1570, pages 2-10, Bellingham, WA, 1991. SPIE.

[830]
D. Mumford. On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop. Biological Cybernetics, 65:135-145, 1991.

[831]
D. Mumford. On the computational architecture of the neocortex. II. The role of the cortico-cortical loops. Biological Cybernetics, 66:241-251, 1992.

[832]
D. Mumford. Neuronal architectures for pattern-theoretic problems. In C. Koch and J. L. Davis, editors, Large-scale neuronal theories of the brain, chapter 7, pages 125-152. MIT Press, Cambridge, MA, 1994.

[833]
J. L. Mundy and A. J. Heller. The evolution and testing of a model-based object recognition system. In Proceedings of the 3rd International Conference on Computer Vision, pages 268-282. IEEE, Washington, DC, Osaka, 1990.

[834]
J. L. Mundy and A. Zisserman, editors. Geometric invariance in computer vision. MIT Press, Cambridge, MA, 1992.

[835]
H. Murase and S. Nayar. Visual learning and recognition of 3D objects from appearance. International Journal of Computer Vision, 14:5-24, 1995.

[836]
G. L. Murphy and D. L. Medin. The role of theories in conceptual coherence. Psychological Review, 92:289-316, 1985.

[837]
G. L. Murphy and E. J. Wisniewski. Categorizing objects in isolation and in scenes: what the superordinate is good for. J. Exp. Psychol.: Learning, Memory and Cognition, 15:572-586, 1989.

[838]
F. A. Mussa-Ivaldi and S. F. Giszter. Vector field approximation: a computational paradigm for motor control and learning. Biological Cybernetics, 67:491-500, 1992.

[839]
F. A. Mussa-Ivaldi. From basis functions to basis fields: vector field approximation from sparse data. Biological Cybernetics, 67:479-490, 1992.

[840]
S. Nag. The complex analytic theory of Teichmüller spaces. Wiley, New York, 1988.

[841]
H.-H. Nagel and W. Enkelmann. Towards the estimation of displacement vector fields by `oriented smoothness' constraints. In Proceedings Int. Conf. on Pattern Recognition, pages 6-8, Montreal, Canada, July 1984.

[842]
K. Nakayama and G. H. Silverman. The aperture problem ii: spatial integration of velocity information along contours. Vision Research, 28:739-746, 1988.

[843]
D. Navon. Does attention serve to integrate features? Psychol. Review, 97:453-459, 1990.

[844]
S. Nayar and R. Bolle. Reflectance ratio: a photometric invariant for object recognition. In Proceedings of the 4th International Conference on Computer Vision, pages 280-285, Washington, DC, 1993. IEEE.

[845]
T. Nazir and J. K. O'Regan. Some results on translation invariance in the human visual system. Spatial vision, 5:81-100, 1990.

[846]
S. Negahdaripour and B. K. P. Horn. Direct passive navigation. A.I. Memo No. 821, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1985.

[847]
U. Neisser. Cognitive Psychology. Appleton-Century-Crofts, New York, NY, 1967.

[848]
R. C. Nelson and J. Aloimonos. Using flow field divergence for obstacle avoidance: towards qualitative vision. In Proceedings of the 2nd International Conference on Computer Vision, pages 188-196, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[849]
F. Newell, P. Chiroro, and T. Valentine. Recognising unfamiliar faces: The effects of distinctiveness and view, 1996. submitted.

[850]
F. Newell and J. M. Findlay. The effect of familiarity on the time to recognise depth-rotated objects. In Perception volume 22 supplement, page 22b, September 1993.

[851]
A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ, 1972.

[852]
W. T. Newsome and E. B. Paré. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci., 8:2201-2211, 1988.

[853]
J. Nicod. Foundations of Geometry and Induction. Routledge & Kegan Paul, 1930.

[854]
H. K. Nishihara and T. Poggio. Stereo vision for robotics. In J. M. Brady and R. Paul, editors, Robotics research: the first international symposium, pages 489-505. MIT Press, Cambridge, MA, 1984.

[855]
H. K. Nishihara. Practical real-time imaging stereo matcher. Optical Engineering, 23(5):536-545, 1984.

[856]
M. J. Nissen. Accessing features and objects: is location special? In M. I. Posner and O. S. Marin, editors, Attention and Performance, volume XI, pages 205-219. Erlbaum, 1985.

[857]
R. M. Nosofsky. Exemplar-based accounts of relations between classification, recognition, and typicality. Journal of Experimental Psychology: Learning, Memory and Cognition, 14:700-708, 1988.

[858]
R. M. Nosofsky. Stimulus bias, asymmetric similarity, and classification. Cognitive Psychology, 23:94-140, 1991.

[859]
R. M. Nosofsky. Tests of an exemplar model for relating perceptual classification and recognition memory. Journal of Experimental Psychology: Human Perception and Performance, 17:3-27, 1991.

[860]
R. M. Nosofsky. Similarity scaling and cognitive process models. Annual Review of Psychology, 43:25-53, 1992.

[861]
H.-C. Nothdruft. Feature analysis and the role of similarity in preattentive vision. Perception and Psychophysics, 52:355-375, 1992.

[862]
S. J. Nowlan. Max likelihood competition in RBF networks. CRG TR-90-2, Univ. of Toronto, February 1990. to appear in Proc. NIPS-89.

[863]
Y.-L. O, A. Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer, editors. Shape in picture: mathematical description of shape in grey-level images, volume 126 of NATO ASI Series F. Springer, Berlin, 1993.

[864]
K. N. Ogle. Researches in Binocular Vision. Hafner, New York, 1950.

[865]
L. O'Gorman and J. V. Nickerson. An approach to fingerprint filter design. Pattern Recognition, 22:29-38, 1989.

[866]
E. Oja. Neural networks, principal components, and subspaces. International Journal of Neural Systems, 1:61-68, 1989.

[867]
S. M. Omohundro. Efficient algorithms with neural network behavior. UIUCDCS R-87-1331, Univ. of Illinois at Urbana-Champaign, April 1987.

[868]
S. M. Omohundro. Efficient algorithms with neural network behavior. Complex Systems, 1:273-347, 1987.

[869]
L. M. Optican and B. J. Richmond. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information Theoretic Analysis. J. of Neurophysiology, 57:162-178, 1987.

[870]
K. O'Regan, R. Rensink, and J. J. Clark. Mud splashes render picture changes invisible. Invest. Ophthalm. Vis. Sci., 37(3):S213, 1996.

[871]
J. K. O'Regan. Solving the real mysteries of visual perception: The world as an outside memory. Canadian J. of Psychology, 46:461-488, 1992.

[872]
R. C. O'Reilly and M. H. Johnson. Object recognition and sensitive periods: A computational analysis of visual imprinting. Neural Computation, 6:357-389, 1994.

[873]
R. C. O'Reilly. The LEABRA Model of Neural Interactions and Learning in the Neocortex. PhD thesis, CMU, 1996.
There is evidence that the specialized neural processing systems in the neocortex, which are responsible for much of human cognition, arise from the action of a relatively general-purpose learning mechanism. I propose that such a neocortical learning mechanism can be best understood as the combination of error-driven and self-organizing (Hebbian associative) learning. This model of neocortical learning, called LEABRA (local, error-driven and associative, biologically realistic algorithm), is computationally powerful, has important implications for psychological models, and is biologically feasible. The thesis begins with an evaluation of the strengths and limitations of current neural network learning algorithms as models of a neocortical learning mechanism according to psychological, biological, and computational criteria. I argue that error-driven (e.g., backpropagation) learning is a reasonable computational and psychological model, but it is biologically implausible. I show that backpropagation can be implemented in a biologically plausible fashion by using interactive (bi-directional, recurrent) activation flow, which is known to exist in the neocortex, and has been important for accounting for psychological data. However, the interactivity required for biological and psychological plausibility significantly impairs the ability to respond systematically to novel stimuli, making it still a bad psychological model (e.g., for nonword reading). I propose that the neocortex solves this problem by using inhibitory activity regulation and Hebbian associative learning, the computational properties of which have been explored in the context of self-organizing learning models. I show that by introducing these properties into an interactive (biologically plausible) error-driven network, one obtains a model of neocortical learning that: 1) provides a clear computational role for a number of biological features of the neocortex; 2) behaves systematically on novel stimuli, and exhibits transfer to novel tasks; 3) learns rapidly in networks with many hidden layers; 4) provides flexible access to learned knowledge; 5) shows promise in accounting for psychological phenomena such as the U-shaped curve in over-regularization of the past-tense inflection; 6) has a number of

[874]
C. E. Osgood. The similarity paradox in human learning: A resolution. Psychological Review, 56:132-143, 1949.

[875]
D. N. Osherson and E. E. Smith. On the adequacy of prototype theory as a theory of concepts. Cognition, 9:35-58, 1981.

[876]
A. O'Toole, H. Abdi, K. Deffenbacher, and D. Valentin. Low-dimensional representation of faces in higher dimensions of the face space. Journal of the Optical Society of America, 10:405-410, 1993.

[877]
A. O'Toole, K. Deffenbacher, D. Valentin, and H. Abdi. Structural aspects of face recognition and the other-race effect. Memory and Cognition, 22:208-224, 1994.

[878]
A. J. O'Toole, H. Abdi, K. A. Deffenbacher, and D. Valentin. A perceptual learning theory of the information in faces. In T. Valentine, editor, Cognitive and Computational Aspects of Face Recognition, pages 159-182. Routledge, New York, NY, 1995.

[879]
A. J. O'Toole, H. Bülthoff, and C. L. Walker. Face recognition across viewpoint. MPIK TR 21, Max Planck Institut für biologische Kybernetik, Tübingen, Germany, September 1995.

[880]
A. J. O'Toole, S. Edelman, and H. Bülthoff. Face recognition and identification from novel viewpoints. MPIK TR 31, Max Planck Institut für biologische Kybernetik, Tübingen, Germany, June 1996.

[881]
A. J. O'Toole, S. Edelman, and H. H. Bülthoff. Stimulus-specific effects in face recognition over changes in viewpoint. MPIK TR 31, Max Planck Institut für biologische Kybernetik, Tübingen, Germany, June 1996.

[882]
A. O'Toole, T. Vetter, N. Troje, and H. Bülthoff. Sex classification is better with three-dimensional head structure than with image intensity information. Perception, accepted.

[883]
A. J. O'Toole and S. Edelman. Face distinctiveness in recognition across viewpoint: An analysis of the statistical structure of face spaces. In I. Essa, editor, Proc. 2nd Intl. Conf. on Face and Gesture Recognition, pages 10-15, 1996.

[884]
I. Otto, P. Grandguillaume, L. Boutkhil, and Y. Burnod. Direct and indirect cooperation between temporal and parietal networks for invariant visual recognition. J. Cognitive Neuroscience, 4:35-57, 1992.

[885]
A. Paivio. The relationship between verbal and perceptual codes. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume VIII, pages 375-397. Academic Press, New York, NY, 1978.

[886]
S. E. Palmer, E. Rosch, and P. Chase. Canonical perspective and the perception of objects. In J. Long and A. Baddeley, editors, Attention and Performance IX, pages 135-151. Erlbaum, Hillsdale, NJ, 1981.

[887]
S. E. Palmer. Visual perception and world knowledge: Notes on a model of sensory-cognitive interaction. In D. A. Norman and D. E. Rumelhart, editors, Explorations in cognition. Erlbaum, Hillsdale, NJ, 1975.

[888]
S. E. Palmer. Fundamental aspects of cognitive representation. In E. Rosch and B. B. Lloyd, editors, Cognition and Categorization, pages 259-303. Erlbaum, Hillsdale, NJ, 1978.

[889]
S. E. Palmer. The psychology of perceptual organization: a transformational approach. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and machine vision, pages 269-340. Academic Press, New York, 1983.

[890]
A. J. Parker and M. J. Hawken. Capabilities of monkey cortical cells in spatial resolution tasks. Journal of the Optical Society of America, 2:1101-1114, 1985.

[891]
A. J. Parker and M. J. Hawken. Hyperacuity and the visual cortex. Nature, 326:105-106, 1987.

[892]
D. E. Pearson and J. A. Robinson. Visual communication at very low data rates. Proc. IEEE, 73:795-812, 1985.

[893]
D. E. Pearson. The extraction and use of facial features in low bit-rate visual communication. Phil. Trans. R. Soc. Lond. B, 335:79-85, 1992.

[894]
A. Pentland, T. Starner, N. Etcoff, A. Masoiu, O. Oliyide, and M. Turk. Experiments with eigenfaces. In Looking at People Workshop, IJCAI 93, 1993.

[895]
A. Pentland and S. Sclaroff. Closed-form solutions for physically based shape modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:715-729, 1991.

[896]
A. Pentland. A new sense for depth of field. In Proceedings IJCAI, pages 988-994, 1985.

[897]
A. P. Pentland. Shading into texture. Artificial Intelligence, 29:147-170, 1986.

[898]
A. Pentland. Shape information from shading: a theory about human perception. In Proceedings of the 2nd International Conference on Computer Vision, pages 404-413, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[899]
D. N. Perkins. Pictures and the real thing. In P. A. Kolers, M. E. Wrolstad, and H. Bouma, editors, Processing of visible language 2, pages 259-278. Plenum Press, New York, 1980.

[900]
D. I. Perrett, E. T. Rolls, and W. Caan. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res., 47:329-342, 1982.

[901]
D. I. Perrett, A. J. Mistlin, and A. J. Chitty. Visual neurones responsive to faces. Trends in Neurosciences, 10:358-364, 1989.

[902]
D. I. Perrett and M. H. Harries. Characteristic views and the visual inspection of simple faceted and smooth objects: tetrahedra and potatoes. Perception, 17:703-720, 1988.

[903]
J. T. Petersik. The effect of spatial and temporal factors on the perception of stroboscopic rotation simulations. Perception, 9:271-283, 1980.

[904]
S. Petry and G. E. Meyer. The perception of illusory contours. Springer, Berlin, 1987.

[905]
M. W. Pettet and C. D. Gilbert. Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Science, 89:8366-8370, 1992.

[906]
F. Phillips and J. T. Todd. Perception of local three-dimensional shape. J. Exp. Psychol.: HPP, 22:230-944, 1996.

[907]
B. T. Phong. Illumination for computer generated pictures. Communications of the ACM, 18:311-317, 1975.

[908]
M. Piatelli-Palmarini. Evolution, selection and cognition: from learning to parameter setting in biology and in the study of language. Cognition, 31:1-44, 1989.

[909]
C. Pickover. Computers, Pattern, Chaos, and Beauty. St. Martin's Press, 1990.

[910]
W. Pitts and W. S. McCulloch. How we know universals: the perception of auditory and visual forms. In Embodiments of mind, pages 46-66. MIT Press, Cambridge, MA, 1965.

[911]
C. G. C. Pitts. Introduction to metric spaces. Oliver & Boyd, Edinburgh, 1972.

[912]
Plato. Theaetetus. The Internet, -360. translated by B. Jowett; available electronically at URL gopher://gopher.vt.edu:10010/02/131/23.

[913]
J. Platt. A resource-allocating network for function interpolation. Neural Computation, 3:213-225, 1991.

[914]
D. C. Plaut and M. J. Farah. Visual object representation: interpreting neurophysiological data within a computational framework. J. of Cognitive Neuroscience, 2:320-343, 1990.

[915]
T. Poggio, H. K. Nishihara, and K. R. K. Nielsen. Zero-crossings and spatiotemporal interpolation in vision: aliasing and electrical coupling between sensors. A.I. Memo No. 675, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1982.

[916]
T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature, 317:314-319, 1985.

[917]
T. Poggio, E. B. Gamble, and J. J. Little. Parallel integration of vision modules. Science, 242:436-440, 1988.

[918]
T. Poggio, W. Yang, and V. Torre. Optical flow: computational properties and networks, biological and analog. In R. Durbin, C. Miall, and G. Mitchison, editors, The computing neuron, pages 355-370. Addison Wesley, New York, NY, 1989.

[919]
T. Poggio, M. Fahle, and S. Edelman. Synthesis of visual modules from examples: learning hyperacuity. A.I. Memo No. 1271, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991.

[920]
T. Poggio, S. Edelman, and M. Fahle. Learning of visual modules from examples: a framework for understanding adaptive visual performance. Computer Vision, Graphics, and Image Processing: Image Understanding, 56:22-30, 1992.

[921]
T. Poggio, M. Fahle, and S. Edelman. Fast perceptual learning in visual hyperacuity. Science, 256:1018-1021, 1992.

[922]
T. Poggio and S. Edelman. A network that learns to recognize three-dimensional objects. Nature, 343:263-266, 1990.

[923]
T. Poggio and F. Girosi. A theory of networks for approximation and learning. A.I. Memo No. 1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[924]
T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247:978-982, 1990.

[925]
T. Poggio and A. Hurlbert. Observations on cortical mechanisms for object recognition and learning. In C. Koch and J. Davis, editors, Large Scale Neuronal Theories of the Brain, pages 153-182. MIT Press, Cambridge, MA, 1994.

[926]
G. F. Poggio and T. Poggio. The analysis of stereopsis. Ann. Rev. Neurosci., 7:379-412, 1984.

[927]
T. Poggio and W. Reichardt. Visual control of orientation behavior in the fly (parts i and ii). Quart. Rev. Biophys., 3:311-439, 1976.

[928]
Tomaso Poggio and the staff. MIT progress in understanding images. In Proceedings Image Understanding Workshop, Cambridge, MA,, April 1988. Morgan Kaufmann, San Mateo, CA.

[929]
T. Poggio and T. Vetter. Recognition and structure from one 2D model view: observations on prototypes, object classes, and symmetries. A.I. Memo No. 1347, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1992.

[930]
T. Poggio. A theory of how the brain might work. Cold Spring Harbor Symposia on Quantitative Biology, LV:899-910, 1990.

[931]
H. Poincaré. Mathematics and Science: Last Essays. Dover, New York, 1913/1963. translated by J. W. Bolduc.

[932]
U. Polat and D. Sagi. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. CS-TR 24, Weizmann Institute of Science, 1991.

[933]
U. Polat and D. Sagi. Lateral interactions between spatial filters: excitation and inhibition affected by spatial configuration. Perception, 21 (suppl.2):92, 1992.

[934]
U. Polat and D. Sagi. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Research, 33:993-997, 1993.

[935]
U. Polat and D. Sagi. The architecture of perceptual spatial interactions. Vision Research, 34:73-78, 1994.

[936]
U. Polat and D. Sagi. Spatial interactions in human vision: from near to far via experience dependent cascades of connections. Proceedings of the National Academy of Science, 1994. in press.

[937]
S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. A stereo correspondence algorithm using a disparity gradient limit. Perception, 14:449-470, 1985.

[938]
D. Pollard. Convergence of stochastic processes. Springer, New York, NY, 1984.

[939]
A. Pollatsek, K. Rayner, and W. E. Collins. Integrating pictorial information across eye movements. J. Exp. Psychol.: General, 113:426-442, 1984.

[940]
J. R. Pomerantz and E. A. Pristach. Emergent features, attention, and perceptual glue in visual form perception. Journal of Experimental Psychology: Human Perception and Performance, 15:635-649, 1989.

[941]
M. Potter. Meaning in visual search. Science, 187:965-966, 1975.

[942]
M. J. D. Powell. Radial basis functions for multivariable interpolation: a review. In J. C. Mason and M. G. Cox, editors, Algorithms for approximation. Clarendon Press, Oxford, 1987.

[943]
K. Prazdny. Egomotion and relative depth map from optical flow. Biological Cybernetics, 36:87-102, 1980.

[944]
K. Prazdny. On the information in optical flow. Computer Vision, Graphics, and Image Processing, 22:239-259, 1983.

[945]
K. Prazdny. Detection of binocular disparities. Biological Cybernetics, 52:93-99, 1985.

[946]
F. P. Preparata and M. I. Shamos. Computational Geometry. Springer Verlag, New York, 1985.

[947]
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

[948]
D. Price, S. Knerr, L. Personnaz, and G. Dreyfus. Pairwise neural network classifiers with probabilistic outputs. In D. S. Touretzky G. Tesauro and T. K. Leen, editors, Advances in Neural Information Processing 7, pages 1109-1116. MIT Press, 1995.

[949]
C. J. Price and G. W. Humphreys. The effects of surface detail on object categorization and naming. Quarterly J. Exp. Psych. A, 41:797-828, 1989.

[950]
H. Putnam. Minds and machines. In S. Hook, editor, Dimensions of mind. New York University Press, New York, NY, 1960.

[951]
H. Putnam. Mind, language and reality. Cambridge University Press, Cambridge, 1975.

[952]
H. Putnam. Representation and reality. MIT Press, Cambridge, MA, 1988.

[953]
Z. Pylyshyn. What the mind's eye tells the mind's brain: a critique of mental imagery. Psychological Bulletin, 80:1-24, 1973.

[954]
Z. Pylyshyn. Computation and cognition. MIT Press, Cambridge, MA, 1985.

[955]
Z. Pylyshyn. The role of location indexes in spatial perception: a sketch of the finst spatial-index model. Cognition, 32:65-97, 1989.

[956]
N. Qian and Y. Zhu. Physiological computation of binocular disparity. Vision Research, 37:--, 1997. in press.

[957]
W. V. O. Quine. Word and object. MIT Press, Cambridge, MA, 1960.

[958]
W. V. O. Quine. Natural kinds. In Ontological relativity and other essays, pages 114-138. Columbia University Press, New York, NY, 1969.

[959]
W. V. O. Quine. The roots of reference. Open Court, La Salle, IL, 1973.

[960]
J. Ross Quinlan and R. L. Rivest. Inferring decision trees using the minimum description length principle, 1987. manuscript.

[961]
P. Quinlan. Visual object recognition reconsidered, 1989. submitted for publication.

[962]
P. Rakic and W. Singer, editors. Neurobiology of Neocortex. Wiley, New York, NY, 1988.

[963]
V. Ramachandran and S. M. Anstis. The perception of apparent motion. Scientific American, 254:102-109, June 1986.

[964]
V. S. Ramachandran. Perception of shape from shading. Nature, 331:163-166, 1988.

[965]
M. Rapp, Y. Yarom, and I. Segev. The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Computation, 4:518-533, 1992.

[966]
R. Ratcliff. Parallel processing mechanisms and processing of organized information in human memory. In J. A. Anderson and G. E. Hinton, editors, Parallel models of associative memory. Erlbaum, Hillsdale, NJ, 1981.

[967]
F. Ratliff and L. Sirovich. Equivalence classes of visual stimuli. Vision Research, 18:845-851, 1978.

[968]
L. Reder and R. L. Klatzky. Transfer: training for performance. In D. Druckman and R. A. Bjork, editors, Learning, remembering, believing: enhancing human performance, chapter 3, pages 25-56. National Academy Press, Washington, DC, 1994. Also available as TR CMU-CS-94-187; The effect of context on training: is learning situated?

[969]
D. L. Reilly, L. N. Cooper, and C. Elbaum. A neural model for category learning. Biological Cybernetics, 45:35-41, 1982.

[970]
D. Reisfeld, H. Wolfson, and Y. Yeshurun. Detection of interest points using symmetry. In Proceedings of the 3rd International Conference on Computer Vision, pages 62-65, Tokyo, 1990. IEEE, Washington, DC.

[971]
L. Rendell and R. Seshu. Learning hard concepts through constructive induction: framework and rationale. In S. J. Hanson, G. A. Drastal, and R. L. Rivest, editors, Computational learning theory and natural learning systems, volume 1, chapter 5, pages 83-141. MIT Press, Cambridge, MA, 1994.

[972]
R. Rensink, K. O'Regan, and J. J. Clark. Image flicker is as good as saccades in making large scene changes invisible. Perception, 24 (suppl.):26-27, 1995.

[973]
R. Rensink, K. O'Regan, and J. J. Clark. To see or not to see: the need for attention to perceive changes in scenes. Invest. Ophthalm. Vis. Sci., 37(3):S213, 1996.

[974]
I. Rentschler, M. Jüttner, and T. Caelli. Probabilistic analysis of human supervised learning and classification. Vision Research, 34:669-687, 1994.

[975]
Yu. G. Reshetnyak. Space mappings with bounded distortion, volume 73 of Translations of mathematical monographs. Amer. Math. Soc., Providence, RI, 1989.

[976]
G. Rhodes, S. Brennan, and S. Carey. Identification and rating of caricatures: implications for mental representations of faces. Cognitive Psychology, 19:473-497, 1987.

[977]
G. Rhodes. Looking at faces: first-order and second-order features as determinants of facial appearance. Perception, 17:43-63, 1988.

[978]
W. Richards, H. R. Wilson, and M. A. Sommer. Chaos in percepts? Biological Cybernetics, 70:345-349, 1994.

[979]
W. Richards and A. Jepson. What makes a good feature? A.I. Memo No. 1356, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, April 1992.

[980]
W. Richards and J. J. Koenderink. Trajectory mapping (``TM''): A new non-metric scaling technique. A.I. Memo No. 1468, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1993.

[981]
W. Richards. How to play twenty questions with nature and win. A.I. Memo No. 660, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, December 1982.

[982]
W. Richards, editor. Natural computation. MIT Press, Cambridge, MA, 1988.

[983]
B. J. Richmond, L. M. Optican, M. Podell, and H. Spitzer. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response Characteristics. J. of Neurophysiology, 57:132-146, 1987.

[984]
B. J. Richmond and L. M. Optican. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of Response Waveform. J. of Neurophysiology, 57:148-161, 1987.

[985]
J. Richter and S. Ullman. A model for the temporal organization of X-- and Y-type receptive fields in the primate retina. Biological Cybernetics, 43:127-145, 1982.

[986]
J. Richter and S. Ullman. Non-linearities in cortical simple cells and the possible detection of zero-crossings. Biological Cybernetics, 53:195-202, 1986.

[987]
M. Riesenhuber and P. Dayan. Neural models for the part-whole hierarchies. In M. Jordan, editor, Advances in Neural Information Processing 9, pages --. MIT Press, 1997. in press.

[988]
J. Rimer. Learning to control a robotic arm using Radial Basis Function interpolation, 1991.

[989]
H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Topology-conserving maps for learning visuo-motor-coordination. Neural Networks, 2:159-168, 1989.

[990]
P. Rives, B. Bouthemy, B. Prasada, and E. Dubois. Recovering the orientation and the position of a rigid body in space from a single view. Technical report, INRS-Telecommunications, Quebec, Canada, 1981.

[991]
I. Rock, D. Wheeler, and L. Tudor. Can we imagine how objects look from other viewpoints? Cognitive Psychology, 21:185-210, 1989.

[992]
I. Rock, C. Schreiber, and T. Ro. The dependence of two-dimensional shape perception on orientation. Perception, 23:1409-1426, 1994.

[993]
I. Rock and J. DiVita. A case of viewer-centered object perception. Cognitive Psychology, 19:280-293, 1987.

[994]
I. Rock and C. Linnett. Is a perceived shape based on its retinal image? Perception, 22:61-76, 1993.

[995]
I. Rock. Orientation and form. MIT Press, Cambridge, MA, 1973.

[996]
I. Rock. Perception. Scientific American Books, New York, 1984.

[997]
I. Rock. On thompson's inverted face phenomenon. Perception, 17:815-817, 1988.

[998]
B. Rogers and R. Cagenello. Disparity curvature and the perception of three-dimensional surfaces. Nature, 339:135-137, 1989.

[999]
A. Rojer and E. L. Schwartz. A multiple-map model for pattern classification. Neural Computation, 1:104-115, 1989.

[1000]
E. T. Rolls, G. C. Baylis, M. E. Hasselmo, and V. Nalwa. The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Exp. Brain Res., 76:153-164, 1989.

[1001]
E. T. Rolls and M. J. Tovee. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. of Neurophysiology, 73:713-726, 1995.

[1002]
E. T. Rolls. Neural organization of higher visual functions. Current Opinion in Neurobiology, 1:274-278, 1991.

[1003]
E. T. Rolls. Visual processing in the temporal lobe for invariant object recognition. In V. Torre and T. Conti, editors, Neurobiology, pages 325-353. Plenum Press, New York, 1996.

[1004]
E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-Braem. Basic objects in natural categories. Cognitive Psychology, 8:382-439, 1976.

[1005]
E. Rosch. Principles of categorization. In E. Rosch and B. Lloyd, editors, Cognition and Categorization, pages 27-48. Erlbaum, Hillsdale, NJ, 1978.

[1006]
D. Rose and V. G. Dobson, editors. Models of the visual cortex. Wiley, New York, NY, 1985.

[1007]
A. Rosenfeld and M. Thurston. Edge and curve detection for visual scene analysis. IEEE Trans. Computers, 20:562-569, 1971.

[1008]
A. Rosenfeld. Recognizing unexpected objects: a proposed approach. Int. J. of Pattern Recognition and Artificial Intelligence, 1:71-84, 1987.

[1009]
J. Rubner and K. Schulten. Development of feature detectors by self-organization. Biological Cybernetics, 62:193-199, 1990.

[1010]
D. L. Ruderman. Designing receptive fields for highest fidelity. Network, 5:147-155, 1994.

[1011]
D. L. Ruderman. The statistics of natural images. Network, 5:517-548, 1994.

[1012]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323:533-536, 1986.

[1013]
D. E. Rumelhart, J. L. McClelland, and The PDP Research Group. Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Cambridge, MA, 1986.

[1014]
D. E. Rumelhart. Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce, and W. F. Brewer, editors, Theoretical Issues in Reading and Comprehension. Erlbaum, Hillsdale, NJ, 1980.

[1015]
B. Russell. Analysis of Mind. Allen and Unwin, London, 1921.

[1016]
E. M. Saffran and M. F. Schwartz. Of cabbages and things: semantic memory from a neuropsychological perspective --- a tutorial review. In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 20, pages 507-536. MIT Press, 1994.

[1017]
D. Sagi and D. Tanne. Perceptual learning: learning to see. Current opinion in neurobiology, 4:195-199, April 1994.

[1018]
A. Saha and J. D. Keeler. Algorithms for better representation and faster learning in Radial Basis Function networks. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 482-489. Morgan Kaufmann, San Mateo, CA, 1990.

[1019]
A. Saidpur, M. Braunstein, and D. D. Hoffman. Interpolation in structure from motion. Perception and Psychophysics, 51:105-117, 1992.

[1020]
K. Sakai, Y. Naya, and Y. Miyashita. Neuronal tuning and associative mechanisms in form representation. Learning and Memory, 1:83-105, 1994.

[1021]
K. Sakai and Y. Miyashita. Neural origanization for the long-term memory of paired associates. Nature, 354:152-155, 1991.

[1022]
K. Sakai and Y. Miyashita. Neuronal tuning to learned complex forms in vision. NeuroReport, 5:829-832, 1994.

[1023]
P. Salapatek and L. B. Cohen, editors. Handbook of infant perception. Academic Press, New York, 1987.

[1024]
C. D. Salzman, K. H. Britten, and W. T. Newsome. Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346:174-177, 1990.

[1025]
J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans. Comput., 18:401-409, 1969.

[1026]
T. Sanger. Optimal unsupervised learning in feedforward neural networks. AI Lab TR 1086, MIT, 1989.

[1027]
T. D. Sanger. Analysis of the two-dimensional receptive fields learned by the generalized Hebbian algorithm in response to random input. Biological Cybernetics, 63:221-228, 1990.

[1028]
T. Sanocki. Visual knowledge underlying letter perception: font-specific schematic tuning. J. Exp. Psychol.: HPP, 13:267-278, 1987.

[1029]
R. R. Sarukkai. Supervised networks that self-organize class outputs. Neural Computation, 9:637-648, 1997.

[1030]
SAS/STAT User's Guide, Version 6. SAS Institute Inc., Cary, NC, 1989.

[1031]
B. Schiele and J. L. Crowley. Object recognition using multidimensional receptive field histograms. In B. Buxton and R. Cipolla, editors, Proc. ECCV'96, volume 1 of Lecture Notes in Computer Science, pages 610-619, Berlin, 1996. Springer.

[1032]
S. Schiffer. Remnants of meaning. MIT Press, 1987.

[1033]
I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39:811-840, 1938.

[1034]
H. Schutze. Dimensions of meaning. In Proceedings of Supercomputing Symposium, pages 787-796, Minneapolis, MN, 1992.

[1035]
E. L. Schwartz. Anatomical and physiological correlates of visual computation from striate to infero-temporal cortex. IEEE Trans. on Sys. Man Cybern, SMC-14:257-271, 1984.

[1036]
E. L. Schwartz. Local and global functional architecture in primate striate cortex: outline of a spatial mapping doctrine for perception. In D. Rose and V. G. Dobson, editors, Models of the visual cortex, pages 146-157. Wiley, New York, NY, 1985.

[1037]
J. Schwartz. The new connectionism. Proc. AAAS, 117:123-141, 1988.

[1038]
P. G. Schyns. Diagnostic recognition: task constraints, object information, and their interactions, 1996. submitted.

[1039]
S. Sclaroff. Deformable prototypes for encoding shape categories in image databases. Pattern Recognition, 30:627-641, 1997.

[1040]
M. Seibert and A. M. Waxman. Learning aspect graph representations from view sequences. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 258-265. Morgan Kaufmann, San Mateo, CA, 1990.

[1041]
M. Seibert and A. M. Waxman. Adaptive 3D object recognition from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:107-124, 1992.

[1042]
R. Sekuler and R. Blake. Perception. Alfred Knopf, New York, 1985.

[1043]
O. G. Selfridge. Pandemonium: a paradigm for learning. In The mechanisation of thought processes. H.M.S.O., London, 1959.

[1044]
J. Serra. Image analysis and mathematical morphology. Academic Press, New York, 1982.

[1045]
M. N. Shadlen and W. T. Newsome. Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4:569-579, 1994.

[1046]
S. A. Shafer and T. Kanade. Using shadows in finding surface orientation. Computer Vision, Graphics, and Image Processing, 22:145-176, 1983.

[1047]
Y. Shapira and S. Ullman. A pictorial approach to object classification. In Proceedings IJCAI, pages 1257-1263, 1991.

[1048]
R. Shapley and J. Victor. Hyperacuity in cat retinal ganglion cells. Science, 231:999-1002, 1986.

[1049]
A. Shashua and S. Ullman. Structural saliency: the detection of globally salient structures using a locally connected network. In Proceedings of the 2nd International Conference on Computer Vision, pages 321-327, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1050]
A. Shashua. Correspondence and affine shape from two orthographic view: motion and recognition. A.I. Memo No. 1327, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, December 1991.

[1051]
A. Shashua. Illumination and view position in 3D visual recognition. In J. Moody, S. J. Hanson, and R. L. Lippman, editors, Neural Information Processing Systems, volume 4, pages 404-411, San Mateo, CA, 1992. Morgan Kaufmann.

[1052]
R. N. Shepard and P. Arabie. Additive clustering: representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86:87-123, 1979.

[1053]
R. N. Shepard and G. W. Cermak. Perceptual-cognitive explorations of a toroidal set of free-form stimuli. Cognitive Psychology, 4:351-377, 1973.

[1054]
R. N. Shepard and S. Chipman. Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1:1-17, 1970.

[1055]
R. N. Shepard and L. A. Cooper. Mental images and their transformations. MIT Press, Cambridge, MA, 1982.

[1056]
R. N. Shepard and S. Kannappan. Connectionist implementation of a theory of generalization. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 665-672. Morgan Kaufmann, 1993.

[1057]
R. N. Shepard and J. Metzler. Mental rotation of three-dimensional objects. Science, 171:701-703, 1971.

[1058]
S. Shepard and D. Metzler. Mental rotation: effects of dimensionality of objects and type of task. J. Exp. Psychol.: Human Perception and Performance, 14:3-11, 1988.

[1059]
R. N. Shepard. The analysis of proximities: Multidimensional scaling with unknown distance function. part i. Psychometrika, 27(2):125-140, 1962.

[1060]
R. N. Shepard. The analysis of proximities: Multidimensional scaling with unknown distance function. part ii. Psychometrika, 27(2):219-246, 1962.

[1061]
R. N. Shepard. Metric structures in ordinal data. J. Math. Psychology, 3:287-315, 1966.

[1062]
R. N. Shepard. Cognitive psychology: A review of the book by U. Neisser. Amer. J. Psychol., 81:285-289, 1968.

[1063]
R. N. Shepard. Multidimensional scaling, tree-fitting, and clustering. Science, 210:390-397, 1980.

[1064]
R. N. Shepard. Ecological constraints on internal representation: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review, 91:417-447, 1984.

[1065]
R. N. Shepard. Toward a universal law of generalization for psychological science. Science, 237:1317-1323, 1987.

[1066]
J. W. Shepherd. An interactive computer system for retrieving faces. In H. D. Ellis, M. A. Jeeves, and F. Newcombe, editors, Aspects of face processing, pages 398-409. Martinus Nijhoff, Dordrecht, 1986.

[1067]
B. G. Sherlock and D. M. Monro. A model for interpreting fingerprint topology. Pattern Recognition, 26:1047-1055, 1993.

[1068]
L. Shiu and H. Pashler. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Perception and Psychophysics, 52:582-588, 1992.

[1069]
G. L. Shulman, M. A. Sullivan, K. Gish, and W. J. Sakoda. The role of spatial-frequency channels in the perception of local and global structure. Perception, 15:259-273, 1986.

[1070]
G. L. Shulman and J. Wilson. Spatial frequency and selective attention to local and global information. Perception, 16:89-101, 1987.

[1071]
G. L. Shulman and J. Wilson. Spatial frequency and selective attention to spatial location. Perception, 16:103-111, 1987.

[1072]
H. Shvaytser. Learnable and nonlearnable visual concepts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:459-466, 1990.

[1073]
H. Shvaytser. Towards a computational theory of model based vision and perception. In Proceedings of the 3rd International Conference on Computer Vision, Tokyo, 1990. IEEE, Washington, DC.

[1074]
W. Siedlecki, K. Siedlecka, and J. Sklansky. An overview of mapping techniques for exploratory pattern analysis. Pattern Recognition, 21:411-429, 1988.

[1075]
P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop -- a formalism for specifying selected invariances in an adaptive network. In J. Moody, R. Lippman, and S. J. Hanson, editors, Neural Information Processing Systems, volume 4, pages 895-903. Morgan Kaufmann, San Mateo, CA, 1992.

[1076]
E. P. Simoncelli and E. H. Adelson. Subband transforms. In J. W. Woods, editor, Subband image coding, chapter 4, pages 143-192. Kluwer Academic, 1990.

[1077]
K. Sims. Interactive evolution of dynamical systems. In Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pages 171-178, Paris, December 1991. MIT Press.

[1078]
K. Sims. Artificial evolution for computer graphics. Computer Graphics (ACM/Siggraph '91 proceedings), 25:319-328, July 1991.

[1079]
M. K. Singley and J. R. Anderson. The transfer of cognitive skill. Harvard U. Press, Cambridge, MA, 1989.

[1080]
P. Sinha and E. Adelson. Recovering 3-D shapes from 2-D line drawings. In M. Vidyasagar, editor, Intelligent Robotics: Proc. 2nd Intl. Symp., pages 51-60, New Delhi, January 1993. Tata McGraw-Hill.

[1081]
J. Sirosh, R. Miikkulainen, and Y. Choe, editors. Lateral Interactions in the Cortex: Structure and Function. electronic book, http://www.cs.utexas.edu/users/nn/lateral_interactions_book/cover.html edition, 1995.

[1082]
E. Sklar, H. H. Bulthoff, S. Edelman, and R. Basri. Generalization of object recognition across stimulus rotation and deformation. Invest. Ophthalm. Vis. Science Suppl., 34(4):1081, 1993.

[1083]
A. Sloman. What are the purposes of vision? CSRP 066, University of Sussex, 1987.

[1084]
E. E. Smith, C. Langston, and R. Nisbett. The case for rules in reasoning. Cognitive Science, 16:1-40, 1992.

[1085]
W. Smith, J. Dunn, K. Kirsner, and M. Randell. Colour in map displays: issues for task-specific display design. Interacting with Computers, 7:151-165, 1995.

[1086]
E. E. Smith. Categorization. In D. N. Osherson and E. E. Smith, editors, An invitation to cognitive science: Thinking, volume 2, pages 33-53. MIT Press, Cambridge, MA, 1990.

[1087]
P. H. A. Sneath and R. R. Sokal. Numerical taxonomy. W. H. Freeman, San Francisco, CA, 1973.

[1088]
H. P. Snippe and J. J. Koenderink. Discrimination thresholds for channel-coded systems. Biological Cybernetics, 66:543-551, 1992.

[1089]
J. G. Snodgrass and M. Vanderwart. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6:174-215, 1980.

[1090]
J. F. Soechting, F. Lacquaniti, and C. A. Terzuolo. Coordination of arm movements in 3D space: sensorimotor mapping during drawing movement. Neuroscience, 17:295-311, 1986.

[1091]
W. R. Softky and C. Koch. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci., 13:334-350, 1993.

[1092]
R. R. Sokal and F. J. Rohlf. Biometry. Freeman, NY, 1981.

[1093]
E. D. Sontag. Feedforward nets for interpolation and classification. J. Comp. Syst. Sci., 45:20-48, 1992.

[1094]
A. Spectorov. Generalization of object recognition across stimulus deformations. Master's thesis, Weizmann Institute of Science, Rehovot, Israel, October 1993.

[1095]
E. S. Spelke. Origins of visual knowledge. In D. N. Osherson, S. M. Kosslyn, and J. M. Hollerbach, editors, Visual cognition and action, volume 2, pages 99-128. MIT Press, Cambridge, MA, 1990.

[1096]
B. Spinoza. The Ethics. J. Simon Publisher, Malibu, CA, 1677/1981.

[1097]
H. Spitzer, R. Desimone, and J. Moran. Increased attention enhances both behavioral and neuronal performance. Science, 240:338-340, 1988.

[1098]
H. Spitzer and S. Hochstein. Complex-cell receptive field models. Progress in neurobiology, 31:285-309, 1988.

[1099]
O. Sporns, G. Tononi, and G. M. Edelman. Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proceedings of the National Academy of Science, 88:129-133, 1991.

[1100]
S.N. Srihari and R.M. Bov zinovi& acute;c. A multi-level perception approach to reading cursive script. Artificial Intelligence, 33:217-255, 1987.

[1101]
V. S. Srinivasan and N. N. Murthy. Detection of singular points in fingerprint images. Pattern Recognition, 25:139-153, 1992.

[1102]
I. Stainvas, N. Intrator, and A. Moshaiov. Improving recognition via reconstruction, 1997. submitted.

[1103]
L. Standing. Learning 10000 pictures. Q. J. Exp. Psychol., 25:207-222, 1973.

[1104]
C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM, 29:1213-1228, 1986.

[1105]
B. Stankiewicz and J. Hummel. MetriCat: a representation for basic and subordinate-level classification. In G. W. Cottrell, editor, Proceedings of 18th Annual Conf. of the Cognitive Science Society, pages 254-259, San Diego, CA, July 1996.

[1106]
L. Stark, D. Eggert, and K. Bowyer. Aspect graphs and nonlinear optimization in 3-d object recognition. In Proceedings of the 2nd International Conference on Computer Vision, pages 501-507, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1107]
S. B. Steinman. Serial and parallel search in pattern vision? Perception, 16:389-398, 1987.

[1108]
K. A. Stevens, M. Lees, and A. Brookes. Combining binocular and monocular curvature features. Perception, 20:425-440, 1991.

[1109]
K. A. Stevens and A. Brookes. Probing depth in monocular images. Biological Cybernetics, 56:355-366, 1987.

[1110]
K. A. Stevens and A. Brookes. Integrating stereopsis with monocular interpretation of planar surfaces. Vision Research, 28:371-386, 1988.

[1111]
K. Stevens. The visual interpretation of surface contours. Artificial Intelligence, 17:47-75, 1981.

[1112]
J. Stewman and K. Bowyer. Creating the perspective projection aspect graph of polyhedral objects. In Proceedings of the 2nd International Conference on Computer Vision, pages 494-500, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1113]
S. Stich. From folk psychology to cognitive science: the case against belief. MIT Press, Cambridge, MA, 1983.

[1114]
S. Stich. The fragmentation of reason. MIT Press, Cambridge, MA, 1990.

[1115]
J. Stone and B. Dreher. Parallel processing of information in the visual pathways. Trends in Neurosciences, 3:441-446, 1982.

[1116]
C. J. Stone. Optimal global rates of convergence for nonparametric regression. Annals of statistics, 10:1040-1053, 1982.

[1117]
J. V. Stone. A canonical microfunction for learning perceptual invariances. Perception, 25:207-220, 1996.

[1118]
G. R. Stoner, T. D. Albright, and V. S. Ramachandran. Transparency and coherence in human motion perception. Nature, 344:153-155, 1990.

[1119]
D. G. Stork and H. R. Wilson. Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? Journal of the Optical Society of America, 7:1362-1373, 1990.

[1120]
G. Strang. Wavelets and dilation equations: a brief introduction. SIAM Review, 31:614-627, 1989.

[1121]
T. M. Strat and M. A. Fischler. One-eyed stereo: a general approach to modeling 3-D scene geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:730-741, 1986.

[1122]
G. Stratton. Vision without inversion of the retinal image. In W. N. Dember, editor, Visual perception: the nineteenth century, pages 143-154. Wiley, 1897/1964.

[1123]
M. P. Stryker. Cortical physiology: Is grandmother an oscillation? Nature, 338:297-298, 1989.

[1124]
C. Y. Suen. Handwriting generation, perception and recognition. Acta Psychologica, 54:295-312, 1983.

[1125]
T. Sugihara, S. Edelman, and K. Tanaka. Representation of objective similarity in the monkey. Invest. Ophthalm. Vis. Sci. Suppl. (Proc. ARVO), 37, 1996. abstract.

[1126]
T. Sugihara, S. Edelman, and K. Tanaka. Representation of objective similarity among three-dimensional shapes in the monkey. Biological Cybernetics, 1997. submitted.

[1127]
D. Sundararaman. Moduli, deformations and classifications of compact complex manifolds. Pitman, 1980.

[1128]
P. Suppes, M. Pavel, and J. Falmagne. Representations and models in psychology. Ann. Rev. Psychol., 45:517-544, 1994.

[1129]
M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer Vision, 7:11-32, 1991.

[1130]
N. V. Swindale and M. S. Cynader. Vernier acuity of neurones in cat visual cortex. Nature, 319:591-593, 1986.

[1131]
K. Tanaka, Y. Fukada, and H. Saito. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the Macaque monkey. J. Neurophysiology, 62:642-656, 1989.

[1132]
K. Tanaka, H. Saito, Y. Fukada, and M. Moriya. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol., 66:170-189, 1991.

[1133]
J. W. Tanaka and M. J. Farah. Parts and wholes in face recognition. Quarterly J. Exp. Psychol., 46A:225-245, 1993.

[1134]
K. Tanaka. Inferotemporal cortex and higher visual functions. Current Opinion in Neurobiology, 2:502-505, 1992.

[1135]
K. Tanaka. Column structure of inferotemporal cortex: ``visual alphabet'' or ``differential amplifiers''? In Proc. IJCNN-93, Nagoya, 1993.

[1136]
K. Tanaka. Neuronal mechanisms of object recognition. Science, 262:685-688, 1993.

[1137]
K. Tanaka. Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19:109-139, 1996.

[1138]
C. C. Tappert. Cursive script recognition by elastic matching. IBM J. of Research and Development, 26:765-771, 1982.

[1139]
M. J. Tarr, H. H. Bülthoff, M. Zabinski, and V. Blanz. To what extent do unique parts influence recognition across changes in viewpoint? Psychological Science, pages --, 1997. in press.

[1140]
M. J. Tarr and H. H. Bülthoff. Is human object recognition better described by geon-structural-descriptions or by multiple-views? Journal of Experimental Psychology: Human Perception and Performance, 21:1494-1505, 1995.

[1141]
M. J. Tarr and I. Gauthier. Do viewpoint-dependent mechanisms generalize across members of a class? Cognition, 1997. submitted.

[1142]
M. J. Tarr and S. Pinker. Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21:233-282, 1989.

[1143]
M. J. Tarr and S. Pinker. When does human object recognition use a viewer-centered reference frame? Psychological Science, 1:253-256, 1990.

[1144]
M. J. Tarr. Orientation dependence in three-dimensional object recognition. PhD thesis, Dept. of Brain and Cognitive Sciences, MIT, 1989.

[1145]
J. M. Tenenbaum, M. A. Fischler, and H. G. Barrow. Scene modeling: a structural basis for image description. In A. Rosenfeld, editor, Image Modeling, pages 371-389. Academic Press, New York, 1981.

[1146]
D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:413-424, 1986.

[1147]
M. Theeuwen, L. E. Miller, and C. C. A. M. Gielen. Are the orientation of head and arm related during pointing movements? J. Motor Behav., 90:242-250, 1993.

[1148]
W. B. Thompson and J. K. Kearney. Inexact vision. In Workshop on motion, representation and analysis, pages 15-22, 1986.

[1149]
D. W. Thompson and J. L. Mundy. Three-dimensional model matching from an unconstrained viewpoint. In Proceedings of IEEE Conference on Robotics and Automation, pages 208-220, Raleigh, NC, 1987.

[1150]
P. Thompson. Margaret Thatcher: A new illusion. Perception, 9:483-484, 1980.

[1151]
S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. 381:520-522, 1996.

[1152]
S. Thrun and T. Mitchell. Learning one more thing. In C. Mellish, editor, Proc. 14th IJCAI, volume 2, pages 1217-1223, San Mateo, CA, 1995. Morgan Kaufmann.

[1153]
L. L. Thurstone. The law of comparative judgement. Psychological Review, 34:273-286, 1927.

[1154]
A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. W. H. Winston, Washington, D.C., 1977.

[1155]
J. T. Todd and E. Mingolla. Perception of surface curvature and direction of illumination from patterns of shading. J. Exp. Psychol.: HPP, 9:583-595, 1983.

[1156]
J. T. Todd and F. Reichel. Perception of ordinal depth relations from patterns of shading. J. Exp. Psychol.: HPP, 16:583-595, 1990.

[1157]
A. Toet and D. M. Levi. The two-dimensional shape of spatial interaction zones in the parafovea. Vision Research, 32:1349-1357, 1992.

[1158]
M. Tomonaga and T. Matsuzawa. Perception of complex geometric figures in chimpanzees (pan troglodytes) and humans (homo sapiens): analyses of visual similarity on the basis of choice reaction time. J. Comparative Psychol., 106:43-52, 1992.

[1159]
K. E. Torrance and E. M. Sparrow. Polarization, directional distribution, and off-specular peak phenomena in light reflected from roughened surfaces. Journal of the Optical Society of America, 56:916-925, 1966.

[1160]
V. Torre and T. Poggio. A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. B, 202:409-416, 1978.

[1161]
V. Torre and T. Poggio. On edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:147-163, 1986.

[1162]
R. Torretti. Philosophy of geometry from Riemann to Poincaré. D. Reidel, Dordrecht, 1984.

[1163]
A. Treisman and G. Gelade. A feature integration theory of attention. Cognitive Psychology, 12:97-136, 1980.

[1164]
A. Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image Processing, 31:156-177, 1985.

[1165]
S. Treue and R. A. Andersen. 3-D structure from motion: rigidity and surface interpolation. Invest. Ophthalm. Vis. Sci., 31 (4):172, 1992.

[1166]
R.Y. Tsai and T.S. Huang. Uniqueness and estimation of three dimensional motion parameters of rigid objects with curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:13-27, 1984.

[1167]
T. Tsao and L. Kanal. A Lie group approach to visual perception. TR 1851, U. of Maryland, College Park, MD, 1987.

[1168]
L. W. Tucker, C. R. Feynman, and D. M. Fritzsche. Object recognition using the Connection Machine. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 871-878, Ann Arbor, MI, 1988.

[1169]
E. Tulving and D. L. Schacter. Priming and human memory systems. Science, 247:301-306, 1990.

[1170]
M. Turk and A. Pentland. Eigenfaces for recognition. J. of Cognitive Neuroscience, 3:71-86, 1991.

[1171]
A. Tversky and I. Gati. Studies of similarity. In E. Rosch and B. Lloyd, editors, Cognition and Categorization, pages 79-98. Erlbaum, 1978.

[1172]
A. Tversky and I. Gati. Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychological Review, 89:123-154, 1982.

[1173]
B. Tversky and K. Hemenway. Objects, parts and categories. J. Exp. Psychol.: General, 113:169-193, 1984.

[1174]
A. Tversky and J. W. Hutchinson. Nearest neighbor analysis of psychological spaces. Psychological Review, 93:3-22, 1986.

[1175]
A. Tversky. Features of similarity. Psychological Review, 84:327-352, 1977.

[1176]
D. Tweed and T. Vilis. Implications of rotational kinematics for the oculomotor system in three dimensions. J. Neurophysiol., 58:832-849, 1987.

[1177]
S. Ullman and R. Basri. Recognition by linear combinations of models. A.I. Memo No. 1152, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990.

[1178]
S. Ullman and R. Basri. Recognition by linear combinations of models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:992-1005, 1991.

[1179]
S. Ullman. Filling in the gaps: the shape of subjective contours and a model for their generation. Biological Cybernetics, 25:1-6, 1976.

[1180]
S. Ullman. Relaxation and constrained optimization by local processes. Computer Graphics and Image Processing, 10:115-125, 1976.

[1181]
S. Ullman. The interpretation of visual motion. MIT Press, Cambridge, MA, 1979.

[1182]
S. Ullman. Against direct perception. Behavioral and Brain Sciences, 3:373-416, 1980.

[1183]
S. Ullman. The effect of similarity between line segments on the correspondence strength in apparent motion. Perception, 9:617-626, 1981.

[1184]
S. Ullman. Computational studies in the interpretation of structure and motion: summary and extension. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and Machine Vision. Academic Press, New York, 1983.

[1185]
S. Ullman. Visual routines. A.I. Memo No. 723, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1983.

[1186]
S. Ullman. Maximizing rigidity: the incremental recovery of 3D structure from rigid and rubbery motion. Perception, 13:255-274, 1984.

[1187]
S. Ullman. Visual routines. Cognition, 18:97-159, 1984.

[1188]
S. Ullman. The optical flow of planar surfaces. A.I. Memo No. 870, 1985.

[1189]
S. Ullman. An approach to object recognition: Aligning pictorial descriptions. A.I. Memo No. 931, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, December 1986.

[1190]
S. Ullman. Aligning pictorial descriptions: an approach to object recognition. Cognition, 32:193-254, 1989.

[1191]
S. Ullman. Sequence-seeking and counter-streams: a model for information flow in the cortex. A.I. Memo No. 1311, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991. Cerebral Cortex, 1995, in press.

[1192]
S. Ullman. Sequence-seeking and counter-streams: a model for information flow in the cortex. Cerebral Cortex, 5:1-11, 1995.

[1193]
S. Ullman. High level vision. MIT Press, Cambridge, MA, 1996.

[1194]
L. Ungerleider and J. V. Haxby. `What' and `where' in the human brain. Current Opinion in Neurobiology, 4:157-165, 1994.

[1195]
M. Usher, M. Stemmler, C. Koch, and Z. Olami. Network amplification of local fluctuations causes high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Computation, 6:795-836, 1994.

[1196]
L. Vaina and N. M. Grzywacz. Structure from motion with impaired local-speed and global motion-field computations, 1989. submitted.

[1197]
J. Väisälä. Lectures on n-dimensional quasiconformal mappings. Number 229 in Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1971.

[1198]
J. Väisälä. Domains and maps. In M. Vuorinen, editor, Quasiconformal space mappings, number 1508 in Lecture Notes in Mathematics, pages 119-131. Springer-Verlag, Berlin, 1992.

[1199]
T. Valentine and V. Bruce. The effects of distinctiveness in recognising and classifying faces. Perception, 15:525-535, 1986.

[1200]
T. Valentine and V. Bruce. Recognizing familiar faces: The role of distinctiveness and familiarity. Canadian Journal of PsychologyPerception, 40:300-305, 1986.

[1201]
T. Valentine. Representation and process in face recognition. In R. Watt, editor, Vision and visual dysfunction, volume 14, chapter 9, pages 107-124. Macmillan, London, 1991.

[1202]
L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.

[1203]
D. C. Van Essen, W. T. Newsome, and J. L. Bixby. The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the Macaque monkey. J. Neurosci., 2:265-283, 1982.

[1204]
M. Venturino and D. Gagnon. Information tradeoffs in complex stimulus structure: local and global levels in naturalistic scenes. Perception and Psychophysics, 52:425-436, 1992.

[1205]
A. Verri and T. Poggio. Against quantitative optical flow. In Proceedings of the 1st International Conference on Computer Vision, pages 171-180, London, England, June 1987. IEEE, Washington, DC.

[1206]
T. Vetter, T. Poggio, and H. H. Bülthoff. 3D object recognition: Symmetry and virtual views. A.I. Memo No. 1409, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1992.

[1207]
T. Vetter, T. Poggio, and H. H. Bülthoff. The importance of symmetry and virtual views in three-dimensional object recognition. Current Biology, 4:18-23, 1994.

[1208]
T. Vetter and T. Poggio. Image synthesis from a single example image. In B. Buxton and R. Cipolla, editors, Proc. ECCV-96, number 1065 in Lecture Notes in Computer Science, pages 652-659, Berlin, 1996. Springer.

[1209]
R. Vogels and G. A. Orban. The effect of practice on the oblique effect in line orientation judgements. Vision Research, 25:1679-1687, 1985.

[1210]
G. von Békésy. Zur theorie des Hörens. Physikalische Zeitschrift, 30:115-125, 1929. see K. R. Boff, L. Kaufman and J. P. Thomas, eds., Handbook of perception and human performance, vol. I, ch. 15, p. 22 (Wiley, 1986: New York).

[1211]
R. von der Heydt, E. Peterhans, and G. Baumgartner. Illusory contours and cortical neurons' responses. Science, 224:1260-1262, 1984.

[1212]
C. von der Malsburg and W. Singer. Principles of cortical network organization. In P. Rakic and W. Singer, editors, Neurobiology of Neocortex, pages 69-100. Wiley, New York, NY, 1988.

[1213]
H. von Helmholtz. Unconscious conclusions. In W. N. Dember, editor, Visual perception: the nineteenth century, pages 163-170. Wiley, 1856/1964.

[1214]
G. K. von Noorden. Binocular vision and ocular motility. Mosby, St.Louis, 1990.

[1215]
H. Voorhees and T. Poggio. Computing texture boundaries from images. Nature, 333:364-367, 1988.

[1216]
J. Wagemans, L. Van Gool, V. Swinnen, and J. Van Horebeek. Higher-order structure in regularity detection. Vision Research, 33:1067-1088, 1993.

[1217]
R. D. Walk. Perceptual learning. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume IX, pages 257-298. Academic Press, New York, NY, 1978.

[1218]
H. Wallach and D. N. O'Connell. The kinetic depth effect. J. Exp. Psychol., 45:205-217, 1953.

[1219]
H. Wallach. On perceived identity: 1. the direction of motion of straight lines. In H. Wallach, editor, On Perception. Quadrangle, New York, 1976.

[1220]
D. Walters. Selection of image primitives for general-purpose visual processing. Computer Vision, Graphics, and Image Processing, 37:261-298, 1987.

[1221]
D. L. Waltz. Understanding line drawings of scenes with shadows. In P. Winston, editor, The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

[1222]
B. Wandell. Foundations of vision. Sinauer, Sunderland, MA, 1995.

[1223]
G. Wang, K. Tanaka, and M. Tanifuji. Optical imaging of functional organization in the monkey inferotemporal cortex. Science, 272:1665-1668, 1996.

[1224]
E. K. Warrington and A. M. Taylor. The contribution of the right parietal lobe to object recognition. Cortex, 9:152-164, 1973.

[1225]
S. Watanabe. Pattern recognition: human and mechanical. Wiley, New York, 1985.

[1226]
A. B. Watson. The cortex transform: rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing, 39:311-327, 1987.

[1227]
R. J. Watt, M. J. Morgan, and R. M. Ward. The use of different cues in vernier acuity. Vision Research, 23:991-995, 1983.

[1228]
R. Watt and F. W. Campbell. Vernier acuity: interactions between length effects and gaps when orientation effects are eliminated. Spatial Vision, 1:31-38, 1985.

[1229]
R. Watt and R. F. Hess. Spatial information and uncertainty in anisometropic amblyopia. Vision Research, 27:661-674, 1987.

[1230]
R. J. Watt and M. J. Morgan. Mechanisms responsible for the assessment of visual location: theory and evidence. Vision Research, 23:97-109, 1983.

[1231]
R. J. Watt and M. J. Morgan. Spatial filters and the localization of luminance changes in human vision. Vision Research, 24:1387-1397, 1984.

[1232]
R. J. Watt and M. J. Morgan. A theory of primitive spatial code in human vision. Vision Research, 25:1661-1674, 1985.

[1233]
R. J. Watt. Visual processing: computational, psychophysical, and cognitive research. Erlbaum, Hillsdale, NJ, 1988.

[1234]
A. M. Waxman and J. H. Duncan. Binocular image flows: Steps toward stereo-motion fusion. Technical Report Technical Report No. CAR-TR-119, University of Maryland, 1985.

[1235]
A. M. Waxman and S. Ullman. Surface structure and 3D motion from image flow: a kinematic analysis. International Journal of Robotics Research, 4:72-94, 1985.

[1236]
A. M. Waxman. An image flow paradigm. In Proc. Workshop on Computer Vision: Representation and Control, pages 49-57, Annapolis, MD, 1984. IEEE.

[1237]
A. M. Waxman. Image flow theory: a framework for 3D inference from time-varying imagery. In C. Brown, editor, Advances in Computer Vision. Erlbaum, Hillsdale, NJ, 1987.

[1238]
A. R. Webb. Multidimensional-scaling by iterative majorization using radial basis functions. Pattern Recognition, 28:753-759, 1995.

[1239]
H. Wechsler, editor. Neural Networks in Perception. Academic Press, New York, NY, 1991.

[1240]
U. Wehmeier, D. Dong, C. Koch, and D. Van Essen. Modeling the mammalian visual system. In C. Koch and I. Segev, editors, Methods in neuronal modeling: from synapses to networks, pages 335-359. MIT Press, Cambridge, MA, 1989.

[1241]
M. Wehr and G. Laurent. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384:162-165, 1996.

[1242]
D. Weinshall, S. Edelman, and H. H. Bülthoff. A self-organizing multiple-view representation of 3D objects. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 274-281. Morgan Kaufmann, San Mateo, CA, 1990.

[1243]
D. Weinshall, M. Werman, and N. Tishby. Stability and likelihood of views of three dimensional objects. In R. Basri, U. Schild, and Y. Stein, editors, Proc. 10th Israeli Symposium on Computer Vision and AI, pages 445-454, 1993.

[1244]
D. Weinshall and C. Tomasi. Linear and incremental acquisition of invariant shape models from image sequences. In Proceedings of the 4th International Conference on Computer Vision, pages 675-682, Washington, DC, 1993. IEEE.

[1245]
D. Weinshall. Application of qualitative depth and shape from stereo. In Proceedings of the 2nd International Conference on Computer Vision, pages 144-148, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1246]
D. Weinshall. Direct computation of 3D shape and motion invariants. A.I. Memo No. 1131, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, May 1989.

[1247]
D. Weinshall. Perception of multiple transparent planes in stereo vision. Nature, 341:737-739, 1989.

[1248]
D. Weinshall. Qualitative depth from stereo, with applications. Computer Vision, Graphics, and Image Processing, 49:222-241, 1990.

[1249]
D. Weinshall. Model-based invariants for 3D vision. International Journal of Computer Vision, 10(1):27-42, 1993.

[1250]
Y. Weiss, S. Edelman, M. Fahle, and T. Poggio. Exploring varieties of perceptual learning with a biologically motivated HyperBF network model of vernier hyperacuity. CS-TR 91-21, Weizmann Institute of Science, November 1991.

[1251]
Y. Weiss, S. Edelman, and M. Fahle. Models of perceptual learning in vernier hyperacuity. Neural Computation, 5:695-718, 1993.

[1252]
Y. Weiss and S. Edelman. Representation with receptive fields: gearing up for recognition. CS-TR 93-09, Weizmann Institute of Science, 1993.

[1253]
Y. Weiss and S. Edelman. Representation of similarity as a goal of early visual processing. Network, 6:19-41, 1995.

[1254]
N. Weisstein and C. S. Harris. Visual detection of line segments: an object-superiority effect. Science, 186:752-755, 1974.

[1255]
P. Werkhoven and J. J. Koenderink. Extraction of motion parallax structure in the visual system. Biological Cybernetics, 63:185-199, 1990. parts I and II.

[1256]
G. Westheimer and S. P. McKee. Visual acuity in the presence of retinal image motion. Journal of the Optical Society of America, 65:847-850, 1975.

[1257]
G. Westheimer and S. P. McKee. Spatial configurations for visual hyperacuity. Vision Research, 17:941-947, 1977.

[1258]
G. Westheimer. Cooperative neural processes involved in stereoscopic acuity. Exp. Brain Res., 36:585-597, 1979.

[1259]
G. Westheimer. The spatial sense of the eye. Invest. Ophthal. Vis. Sci., 18:893-912, 1979.

[1260]
G. Westheimer. Visual hyperacuity. Prog. Sensory Physiol., 1:1-37, 1981.

[1261]
G. Westheimer. The grain of visual space. Cold Spring Harbor Symposia on Quantitative Biology, LV:759-763, 1990.

[1262]
B. Widrow and S. D. Stearns. Adaptive signal processing. Prentice Hall, Englewood Cliffs, NJ, 1985.

[1263]
E. P. Wigner. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure Appl. Math., XIII:1-14, 1960.

[1264]
J. Willats. Seeing lumps, sticks, and slabs in silhouettes. Perception, 21:481-496, 1992.

[1265]
D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory. Nature, 222:960-962, 1969.

[1266]
D. Willshaw, J. Hallam, S. Gingell, and S. L. Lau. Marr's theory of the neocortex as a self-organizing neural network. Neural Computation, 9:911-936, 1997.

[1267]
D. Willshaw. Holography, associative memory, and inductive generalization. In G. E. Hinton and J. A. Anderson, editors, Parallel models of associative memory. Erlbaum, Hillsdale, NJ, 1981.

[1268]
H. R. Wilson and J. R. Bergen. A four mechanism model for threshold spatial vision. Vision Research, 19:19-32, 1979.

[1269]
H. R. Wilson and D. J. Gelb. Modified line-element theory for spatial frequency and width discrimination. Journal of the Optical Society of America, 1:124-131, 1984.

[1270]
H. R. Wilson. Responses of spatial mechanisms can explain hyperacuity. Vision Research, 26:453-469, 1986.

[1271]
H. R. Wilson. Pattern discrimination, visual filters, and spatial sampling irregularity. In M. S. Landy and J. A. Movshon, editors, Computational models of visual processing, pages 153-168. MIT Press, Cambridge, MA, 1991.

[1272]
L. Wiscott, J.-M. Fellous, N. Krüger, and C. von der Malsburg. Face recognition and gender determination. In Proceedings of the International Workshop on Automatic Face- and Gesture-Recognition, IWAFGR'95, pages 92-97, Zurich, 1995.

[1273]
A. P. Witkin and J. M. Tenenbaum. On perceptual organization. In From Pixels to Predicates, pages 149-169. Ablex Publishing Corporation, Norwood, New Jersey, 1986.

[1274]
A. P. Witkin. Recovering surface shape and orientation from texture. Artificial Intelligence, 17:17-45, 1981.

[1275]
A.P. Witkin. Recovering intrinsic scene characteristics for images. In SRI AIMemo, 1981.

[1276]
A. P. Witkin. Intensity-based edge classification. In Proceedings AAAI, pages 36-41, 1982.

[1277]
A. P. Witkin. Scale-space filtering. In Proceedings IJCAI, pages 1019-1022, 1983.

[1278]
L. Wittgenstein. Philosophical Investigations. Blackwell, London, 1973.

[1279]
L. E. Wixson and D. H. Ballard. Real-time qualitative detection of multi-colored objects for object search. In Proc. AAAI-90 Workshop on Qualitative Vision, pages 46-50, San Mateo, CA, 1990. Morgan Kaufmann.

[1280]
R. J. Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19:139-144, 1980.

[1281]
R. P. Würtz, J. C. Vorbrüggen, and C. von der Malsburg. A transputer system for the recognition of human faces by labeled graph matching. In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 37-41. North Holland, Amsterdam, 1990.

[1282]
Y. Yeshurun and E. L. Schwartz. Cepstral filtering on a columnar image architecture: a fast algorithm for binocular stereo segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:759-767, 1989.

[1283]
R. K. Yin. Looking at upside-down faces. Journal of Experimental Psychology, 81:141-145, 1969.

[1284]
M. Young, K. Tanaka, and S. Yamane. On oscillating neuronal responses in the visual cortex of the monkey. J. of Neurophysiology, 67:1464-1474, 1992.

[1285]
G. Young and A. S. Householder. Discussion of a set of points in terms of their mutual distances. Psychometrika, 3:19-22, 1938.

[1286]
M. P. Young and S. Yamane. Sparse population coding of faces in the inferotemporal cortex. Science, 256:1327-1331, 1992.

[1287]
M. P. Young. Objective analysis of the topological organization of the primate cortical visual system. Nature, 358:152-155, 1992.

[1288]
A. L. Yuille, D. S. Cohen, and P. W. Hallinan. Feature extraction from faces using deformable templates. In Proc. CVPR-89, pages 104-109, San Diego, CA, 1989.

[1289]
A. L. Yuille, P. W. Hallinan, and D. S. Cohen. Feature extraction from faces using deformable templates. International Journal of Computer Vision, pages 99-112, 1992.

[1290]
A. L. Yuille and N. M. Grzywacz. A computational theory for the perception of coherent visual motion. Nature, 333:71-74, 1988.

[1291]
A. L. Yuille and N. M. Grzywacz. A winner-take-all mechanism based on presynaptic inhibition feedback. Neural Computation, 1:334-347, 1989.

[1292]
S. Zeki and S. Shipp. The functional logic of cortical connections. Nature, 335:311-317, 1988.

[1293]
R. S. Zemel and G. E. Hinton. Discovering viewpoint-invariant relationships that characterize objects. In D. Touretzky, editor, Neural Information Processing Systems, volume 3, San Mateo, CA, 1991. Morgan Kaufmann.

[1294]
C. Zetsche, E. Barth, and B. Wegmann. The importance of intrisically two dimensional features in biological vision and picture coding. In A.B. Watson, editor, Digital Images and Human Vision, pages 110-138. MIT Press, 1993.

[1295]
V. A. Zorich. The global homeomorphism theorem for space quasiconformal mappings. In M. Vuorinen, editor, Quasiconformal space mappings, number 1508 in Lecture Notes in Mathematics, pages 132-148. Springer-Verlag, Berlin, 1992.

[1296]
A. Zuboff. The story of a brain. In D. R. Hofstadter and D. C. Dennett, editors, The Mind's I, pages 202-212. Basic Books, New York, NY, 1981.

[1297]
S. W. Zucker, A. Dobbins, and L. Iverson. Two stages of curve detection suggest two styles of visual computation. Neural Computation, 1:68-81, 1989.

[1]
L. F. Abbott, E. T. Rolls, and M. J. Tovee. Representational capacity of face coding in monkeys. Cerebral Cortex, 6:498-505, 1996.

[2]
A. Abbott and N. Ahuja. Surface reconstruction by dynamic integration of focus, camera vergence and stereo. In Proceedings of the 2nd International Conference on Computer Vision, pages 532-545, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[3]
M. Abeles. Role of cortical neuron: integrator or coincidence detector? Israel J. Med. Sci., 18:83-92, 1982.

[4]
Y. S. Abu-Mostafa and D. Psaltis. Optical neural computing. Scientific American, 256:66-73, 1987.

[5]
E. H. Adelson. Rigid objects that appear highly non-rigid. Invest. Ophthalmol. Vis. Sci. Suppl., 26:56, 1985.

[6]
Y. Adini, Y. Moses, and S. Ullman. Face recognition: the problem of compensating for changes in illumination direction. CS-TR 93-21, Weizmann Institute of Science, 1993.

[7]
Y. Adini, Y. Moses, , and S. Ullman. Face recognition: the problem of compensating for illumination changes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997. in press.

[8]
D. W. Aha, D. Kibler, and M. A. Albert. Instance-based learning algorithms. Machine Learning, 6:37-66, 1991.

[9]
M. Ahissar and S. Hochstein. Task difficulty and the specificity of perceptual learning. Nature, 387:401-406, 1997.

[10]
S. Ahmad and V. Tresp. Some solutions to the missing feature problem in vision. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages --. Morgan Kaufmann, 1993.

[11]
A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms. Addison-Wesley, Reading, MA, 1974.

[12]
J. Aisbett and G. Gibbon. A tunable distance measure for coloured solid models. Artificial Intelligence, 65:143-164, 1994.

[13]
V. Ajjanagadde and L. Shastri. Rules and variables in neural nets. Neural Computation, 3:121-134, 1991.

[14]
A. Albert. Regression and the Moore-Penrose pseudoinverse. Academic Press, New York, 1972.

[15]
T. D. Albright. Motion perception and the mind-body problem. Current Biology, 1:391-393, 1991.

[16]
P. Alfeld. Scattered data interpolation in three or more variables. In T. Lyche and L. Schumaker, editors, Mathematical Methods in Computer Aided Geometric Design, pages 1-33. Academic Press, New York, 1989.

[17]
J. Y. Aloimonos, I. Weiss, and A. Bandopadhay. Active vision. International Journal of Computer Vision, 2:333-356, 1988.

[18]
J. Y. Aloimonos and D. Shulman. Integration of visual modules: an extension of the Marr paradigm. Academic Press, Boston, 1989.

[19]
J. Y. Aloimonos and M. J. Swain. Shape from texture. In Proceedings IJCAI, pages 926-931, 1985.

[20]
J. Y. Aloimonos. Unification and integration of visual modules. In Proceedings Image Understanding Workshop, pages 507-551, San Mateo, CA, 1989. Morgan Kaufmann.

[21]
J. Y. Aloimonos. Purposive and qualitative vision. In Proc. AAAI-90 Workshop on Qualitative Vision, pages 1-5, San Mateo, CA, 1990. Morgan Kaufmann.

[22]
I. Alter and E. L. Schwartz. Psychophysical studies of shape with Fourier descriptor stimuli. Perception, 17:191-202, 1988.

[23]
R. A. Altes. Ubiquity of hyperacuity. J. Acoust. Soc. Am., 85:943-952, 1988.

[24]
D. G. Amaral and M. P. Witter. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31:571-591, 1989.

[25]
S. Amari and M. Maruyama. A theory on the determination of 3D motion and 3D structure from features. Spatial Vision, 2:151-168, 1987.

[26]
S. Amari. Invariant structures of signal and feature spaces in pattern recognition problems. RAAG Memoirs, 4:553-566, 1968.

[27]
S. Amari. Feature spaces which admit and detect invariant signal transformations. In Proc. 4th Intl. Conf. Pattern Recognition, pages 452-456, Tokyo, 1978.

[28]
J. Ambros-Ingerson, R. Granger, and G. Lynch. Simulation of paleocortex performs hierarchical clustering. Science, 247:1344-1348, March 1990.

[29]
A. Ames. Visual perception and the rotating trapezoid window. Psychological Monographs, 65(7), 1951.

[30]
Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural Computation, 9:1545-1588, 1997.

[31]
R. A. Andersen, R. M. Bracewell, S. Barash, J. W. Gnadt, and L. Fogassi. Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of Macaque. J. Neurosci, 10:1176-1196, 1990.

[32]
C. H. Anderson and D. C. Van Essen. Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proceedings of the National Academy of Science, 84:6297-6301, 1987.

[33]
J. R. Anderson. Arguments concerning representations for mental imagery. Psychological Review, 85:249-277, 1978.

[34]
C. Ankrum and J. Palmer. Memory for objects and parts. Perception and Psychophysics, 50:141-156, 1991.

[35]
M. A. Arbib. Feature detectors, visuomotor coordination, and efferent control. In D. Albrecht, editor, Recognition of Pattern and Form, volume 44, pages 100-110. Springer, Berlin, 1979.

[36]
Aristotle. On dreams. available on the Internet, ca. 330BC.

[37]
F. Gregory Ashby and Nancy A. Perrin. Toward a unified theory of similarity and recognition. Psychological Review, 95(1):124-150, 1988.

[38]
F. G. Ashby, editor. Multidimensional models of perception and cognition. Erlbaum, Hillsdale, NJ, 1992.

[39]
J. J. Atick, P. A. Griffin, and A. N. Redlich. Statistical approach to shape from shading: reconstruction of three-dimensional face surfaces from single two-dimensional images. Neural Computation, 8:1321-1340, 1996.

[40]
J. J. Atick, P. A. Griffin, and A. N. Redlich. The vocabulary of shape: principal shapes for probing perception and neural response. Network, 7:1-5, 1996.

[41]
J. J. Atick and A. N. Redlich. What does the retina know about natural scenes? Neural Computation, 4:196-210, 1992.

[42]
J. J. Atick. Could information theory provide an ecological theory of sensory processing? Network, 3:213-251, 1992.

[43]
C. Atkeson and J. Hollerbach. Kinematic features of unrestrained vertical arm movements. J. Neurosci., 5:2318-2330, 1985.

[44]
R. C. Atkinson and R. M. Shiffrin. Human memory: a proposed system and its control processes. In K. W. Spence, editor, Psychology of learning and motivation: advances in research and theory, volume 2, pages 89-195. Academic Press, New York, 1968.

[45]
F. Attneave. Triangles as ambiguous figures. Am. J. Physiol., 81:447-453, 1968.

[46]
L. Auslander and R. E. MacKenzie. Introduction to differentiable manifolds. McGraw-Hill, 1963.

[47]
N. Ayache and O. D. Faugeras. Hyper: a new approach for the recognition and positioning of two-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(1):44-54, 1986.

[48]
R. Bajcsy and L. Lieberman. Texture gradient as a depth cue. Computer Graphics and Image Processing, 5:52-67, 1976.

[49]
R. Bajcsy. Active perception. Proc. IEEE, 76(8):996-1005, August 1988. special issue on Computer Vision.

[50]
P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition. Neural Computation, 5:402-418, 1993.

[51]
P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2:53-58, 1989.

[52]
K. Ball and R. Sekuler. Direction-specific improvement in motion discrimination. Vision Research, 27:953-965, 1987.

[53]
D. H. Ballard, R. C. Nelson, and B. Yamauchi. Animate vision. Optic News, 15:9-25, 1989.

[54]
D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[55]
D. H. Ballard and L. Hartman. Task frames: primitives for sensory-motor coordination. Computer Vision, Graphics, and Image Processing, 36:274-297, 1986.

[56]
D. H. Ballard and A. Ozcandarli. Eye fixation and early vision: kinetic depth. In Proceedings of the 2nd International Conference on Computer Vision, pages 524-531, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[57]
D. H. Ballard. Cortical connections and parallel processing: structure and function. Behavioral and Brain Sciences, 9:67-120, 1986.

[58]
D. H. Ballard. Interpolation coding: a representation for numbers in neural models. Biological Cybernetics, 57:389-402, 1987.

[59]
D. H. Ballard. Animate vision. Artificial Intelligence, 48:57-86, 1991.

[60]
M. Bar and I. Biederman. One-shot viewpoint invariance in matching novel objects, 1995. unpublished manuscript.

[61]
M. Bar and S. Ullman. Spatial context in recognition. Perception, 25:343-352, 1996.

[62]
S. Barash, R. M. Bracewell, L. Fogassi, J. W. Gnadt, and R. A. Andersen. Saccade-related activity in the lateral intraparietal area ii. Spatial properties. J. Neurophysiology, 66:1109-1124, 1991.

[63]
M. Barchilon Ben-Av, D. Sagi, and J. Braun. Visual attention and perceptual grouping. Perception and Psychophysics, 52:277-294, 1992.

[64]
H. B. Barlow and R. W. Levick. The mechanism of directional selectivity in the rabbit's retina. J. Physiol., 173:477-504, 1965.

[65]
H. B. Barlow and J. D. Mollon, editors. The senses. Cambridge University Press, Cambridge, UK, 1982.

[66]
H. B. Barlow and B. C. Reeves. The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19:783-793, 1979.

[67]
H. B. Barlow. Sensory mechanisms, the reduction of redundancy, and intelligence. In The mechanisation of thought processes, pages 535-539. H.M.S.O., London, 1959.

[68]
H. B. Barlow. Single units and sensation: a neuron doctrine for perceptual psychology. Perception, 1:371-394, 1972.

[69]
H. B. Barlow. The past, present and future of feature detectors. In D. Albrecht, editor, Recognition of Pattern and Form, volume 44 of Lecture Notes in Biomathematics, pages 4-32. Springer, Berlin, 1979.

[70]
H. B. Barlow. Reconstructing the visual image in space and time. Nature, 279:189-190, 1979.

[71]
H. B. Barlow. The absolute efficiency of perceptual decisions. Proceedings of the Royal Society of London B, 290:71-82, 1980.

[72]
H. B. Barlow. Cerebral cortex as model builder. In D. Rose and V. G. Dobson, editors, Models of the visual cortex, pages 37-46. Wiley, New York, 1985.

[73]
H. B. Barlow. The role of single neurons in the psychology of perception. Quart. J. Exp. Psychol., 37A:121-145, 1985.

[74]
H. B. Barlow. Conditions for versatile learning, Helmholtz's unconscious inference, and the task of perception. Vision Research, 30:1561-1571, 1990.

[75]
R. B. Barlow. What the brain tells the eye. Scientific American, pages 66-70, April 1990.

[76]
H. B. Barlow. What is the computational goal of the neocortex? In C. Koch and J. L. Davis, editors, Large-scale neuronal theories of the brain, chapter 1, pages 1-22. MIT Press, Cambridge, MA, 1994.

[77]
H. B. Barlow. Adaptation by hyperpolarization. Science, 276:913-914, 1997.

[78]
S. T. Barnard and M. A. Fischler. Computational stereo. ACM Comput. Surveys, 143:553-572, 1982.

[79]
H. G. Barrow and J. M. Tenenbaum. Recovering intrinsic scene characteristics from images. In A. R. Hanson and E. M. Riseman, editors, Computer Vision Systems, pages 3-26. Academic Press, New York, NY, 1978.

[80]
H. G. Barrow and J. M. Tenenbaum. Computational vision. Proc. IEEE, 69:572-595, 1981.

[81]
H. G. Barrow and J. M. Tenenbaum. Interpreting line drawings as three-dimensional surfaces. Artificial Intelligence, 17:75-116, 1981.

[82]
H. G. Barrow and J. M. Tenenbaum. Retrospective on ``Interpreting line drawings as three-dimensional surfaces''. Artificial Intelligence, 59:71-80, 1993.

[83]
L. W. Barsalou, W. Yeh, B. J. Luka, K. L. Olseth, K. S. Mix, and L. Wu. Concepts and meaning. volume 29, pages 23-61. Chicago Linguistics Society, University of Chicago, 1993.

[84]
L. W. Barsalou. The instability of graded structure: implications for the nature of concepts. In U. Neisser, editor, Concepts and conceptual development, pages 101-140. Cambridge Univ. Press, 1987.

[85]
L. W. Barsalou. Deriving categories to achieve goals. In G. H. Bower, editor, The Psychology of Learning and Motivation: Advances in Research and Theory, volume 27. Academic Press, New York, 1991.

[86]
L. W. Barsalou. Perceptual symbol systems. Behavioral and Brain Sciences, 1998. in press.

[87]
F. C. Bartlett. Remembering: An Experimental and Social Study. Cambridge University Press, Cambridge, 1932.

[88]
A. Barto. From chemotaxis to cooperativity: abstract exercises in neuronal learning strategies. In R. Durbin, C. Miall, and G. Mitchison, editors, The computing neuron, pages 73-98. Addison Wesley, New York, NY, 1989.

[89]
D. J. Bartram. Levels of coding in picture-picture comparison tasks. Memory and Cognition, 4:593-602, 1976.

[90]
R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of deformable shapes. In Proc. IEEE Workshop on Physics-Based Modeling in Computer Vision, pages 135-143. IEEE, 1995.

[91]
R. Basri, D. Roth, and D. Jacobs. Clustering appearances of 3D objects. In Proc. ICCV, pages 414-420. IEEE, 1998.

[92]
R. Basri and D. W. Jacobs. Recognition using region correspondences. International Journal of Computer Vision, 25:141-162, 1996.

[93]
R. Basri and E. Rivlin. Localization and homing using combinations of model views. Artificial Intelligence, 1995. in press.

[94]
R. Basri and S. Ullman. The alignment of objects with smooth surfaces. In Proceedings of the 2nd International Conference on Computer Vision, pages 482-488, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[95]
R. Basri and S. Ullman. Recognition by linear combinations of models. Technical report, The Weizmann Institute of Science, 1989.

[96]
R. Basri. Recognition by prototypes. A.I. Memo No. 1391, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1992.

[97]
R. Basri. Recognition by prototypes. International Journal of Computer Vision, 19(147-168), 1996.

[98]
E. B. Baum, J. Moody, and F. Wilczek. Internal representations for associative memory. Biological Cybernetics, 59:217-228, 1988.

[99]
J. Baxter. The canonical metric for vector quantization. NeuroCOLT NC-TR-95-047, University of London, 1995.

[100]
J. Baxter. Learning internal representations. In Proc. COLT'95, pages 311-320, June 1995.

[101]
J. Baxter. The canonical distortion measure for vector quantization and function approximation. In Jr. D. H. Fisher, editor, Proc. 14th Intl. Conf. on Machine Learning, pages --, Nashville, TN, 1997.

[102]
R. Beals, D. H. Krantz, and A. Tversky. The foundations of multidimensional scaling. Psychological Review, 75:127-142, 1968.

[103]
J. Beck, K. Prazdny, and A. Rosenfeld. A theory of textural segmentation. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and Machine Vision, pages 1-38. Academic Press, New York, NY, 1983.

[104]
J. Beck, A. Sutter, and R. Ivry. Spatial frequency channels and perceptual grouping in texture segmentation. Computer Vision, Graphics, and Image Processing, 37:299-325, 1987.

[105]
J. Beck and S. Prazdny. Highlights and the perception of glossiness. Perception and Psychophysics, 30:407-410, 1981.

[106]
J. Beck. Surface Color Perception. Cornell University Press, Ithaca, NY, 1972.

[107]
J. Beck. Textural segmentation. In J. Beck, editor, Organization and representation in perception, chapter 15. Erlbaum, Hillsdale, NJ, 1982.

[108]
J. D. Becker and J. Krüger. Recognition of visual stimuli from multiple neuronal activity in monkey visual cortex. Biological Cybernetics, 74:287-298, 1996.

[109]
A. Beinglass and H. Wolfson. Articulated object recognition, or, how to generalize the Generalized Hough Transform. Institute of Computer Sciences TR 194/90, Tel Aviv University, 1990.

[110]
R. E. Bellman. Adaptive Control Processes. Princeton University Press, Princeton, NJ, 1961.

[111]
J. Ben-Arie. The probabilistic peaking effect of viewed angles and distances with application to 3D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:760-774, 1990.

[112]
A. Ben-Israel and T. N. E. Greville. Generalized inverses: theory and applications. Wiley, New York, 1974.

[113]
R. G. Bennett and G. Westheimer. The effect of training on visual alignment discrimination and grating resolution. Perception and Psychophysics, 49:541-546, 1991.

[114]
S. Bentin and L. B. Feldman. The contribution of morphological and semantic relatedness to repetition priming at short and long time lags: Evidence from hebrew. Q. Journal Exp. Psychol., 42A:693-711, 1990.

[115]
R. Bergevin and M. D. Levine. Part decomposition of objects from single view line drawings. Computer Vision, Graphics, and Image Processing: Image Understanding, 55:73-83, 1992.

[116]
G. Berkeley. A treatise concerning the principles of human knowledge. Oxford University Press, Oxford, 1996 (original edition 1710).

[117]
G. S. Berns, J. D. Cohen, and M. A. Mintun. Brain regions responsive to novelty in the absence of awareness. Science, 276:1272-1276, 1997.

[118]
D. C. Berry. Implicit learning: twenty-five years on. a tutorial. In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 30, pages 755-781. MIT Press, 1994.

[119]
M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision. Proceedings of the IEEE, 76:869-889, 1988.

[120]
P. J. Besl and R. C. Jain. Invariant surface characteristics for 3D object recognition in range images. Computer Vision, Graphics, and Image Processing, 33:33-80, 1986.

[121]
D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and synthesis. A.I. Memo No. 1431, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, November 1993.

[122]
D. Beymer and T. Poggio. Image representations for visual learning. Science, 272:1905-1909, 1996.

[123]
J. C. Bezdek. Fuzzy models for pattern recognition. IEEE Press, Washington, DC, 1992.

[124]
W. Bialek, F. Rieke, R. R. de Ruyter Van Steveninck, and D. Warland. Reading a neural code. Science, 252:1854-1857, 1991.

[125]
M. Bichsel and A. Pentland. Human face recognition and the face image set's topology. Computer Vision, Graphics, and Image Processing: Image Understanding, 59:254-261, 1994.

[126]
I. Biederman, J. C. Rabinowitz, A. L. Glass, and E. W. Stacy. On the information extracted from a glance at a scene. Journal of Exp. Psychol, 103:597-600, 1974.

[127]
I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz. Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14:143-177, 1982.

[128]
I. Biederman and E. E. Cooper. Evidence for complete translational and reflectional invariance in visual object priming. Perception, 20:585-593, 1991.

[129]
I. Biederman and E. E. Cooper. Priming contour-deleted images: Evidence for intermediate representations in visual object recognition. Cognitive Psychology, 23:393-419, 1991.

[130]
I. Biederman and E. E. Cooper. Size invariance in human shape recognition. Journal of Experimental Psychology: Human Perception and Performance, 18:121-133, 1992.

[131]
I. Biederman and P. C. Gerhardstein. Recognizing depth-rotated objects: evidence and conditions for 3D viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19:1162-1182, 1993.

[132]
I. Biederman and P. C. Gerhardstein. Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bülthoff. Journal of Experimental Psychology: Human Perception and Performance, 21:1506-1514, 1995.

[133]
I. Biederman and G. Ju. Surface versus edge-based determinants of visual recognition. Cognitive Psychology, 20:38-64, 1988.

[134]
I. Biederman and M. S. Shiffrar. Chicken sexing: an expert systems and experimental analysis of a difficult perceptual learning task. Journal of Experimental Psychology: Human Learning, Memory and Cognition, 13:640-645, 1987.

[135]
I. Biederman. Do background depth gradients facilitate object identification? Perception, 10:573-578, 1981.

[136]
I. Biederman. Human image understanding: Recent research and a theory. Computer Vision, Graphics, and Image Processing, 32:29-73, 1985.

[137]
I. Biederman. Recognition by components: a theory of human image understanding. Psychol. Review, 94:115-147, 1987.

[138]
I. Biederman. Aspects and extensions of a theory of human image understanding. In Z. Pylyshyn, editor, Computational processes in human vision: an interdisciplinary perspective, pages 370-428. Ablex, Norwood, NJ, 1988.

[139]
E. Bienenstock, L. Cooper, and P. W. Munro. Theory for the development of neural selectivity: orientation specificity and binocular interaction in visual cortex. J. of Neuroscience, 2:32-48, 1982.

[140]
E. Bienenstock, S. Geman, and D. Potter. Compositionality, MDL priors, and object recognition. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Neural Information Processing Systems, volume 9. MIT Press, 1997.

[141]
E. Bienenstock and S. Geman. Compositionality in neural systems. In M. A. Arbib, editor, The handbook of brain theory and neural networks, pages 223-226. MIT Press, 1995.

[142]
E. Bienenstock. A model of neocortex. Network, 6:179-224, 1995.

[143]
J. Bigün. Recognition of local symmetries in gray value images by harmonic functions. In Proc. 9th Intl. Conf. on Patt. Recog., pages 345-347, 1988.

[144]
P. Billingsley. Probability and measure. Wiley, New York, 1979.

[145]
T. O. Binford. Visual perception by computer. In IEEE Conference on Systems and Control, Miami Beach, FL, December 1971.

[146]
T. O. Binford. Survey of model-based image analysis systems. International Journal of Robotics Research, 1:18-64, 1982.

[147]
H. Bischof and A. Leonardis. Robust recognition of scaled eigenimages through a hierarchical approach. In Proc. ICCV, pages 664-670. IEEE, 1998.

[148]
P. O. Bishop, J. S. Coombs, and G. H. Henry. Receptive fields of simple cells in the cat striate cortex. J. Physiol. (London), 231:31-60, 1973.

[149]
C. Bishop. Neural networks for pattern recognition. Oxford University Press, Oxford, 1995.

[150]
S. J. Blackmore, G. Brelstaff, K. Nelson, and T. Troscianko. Is the richness of our visual world an illusion? Transsaccadic memory for complex scenes. Perception, 24:1075-1081, 1995.

[151]
A. Blake and G. Brelstaff. Geometry from specularities. In Proceedings of the 2nd International Conference on Computer Vision, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[152]
A. Blake and H. H. Bülthoff. Does the brain know the physics of specular reflection? Nature, 343:165-168, 1990.

[153]
A. Blake and A. Zisserman. Visual reconstruction. MIT Press, Cambridge, MA, 1988.

[154]
A. Blake. Specular stereo. In Proceedings IJCAI, pages 973-976, 1985.

[155]
C. Blakemore and F. W. Campbell. Adaptation to spatial stimuli. J. Physiol., 200:11-13, 1968.

[156]
C. Blakemore and E. A. Tobin. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp. Brain Res., 15:439-440, 1972.

[157]
V. Blanz, M. J. Tarr, H. Bülthoff, and T. Vetter. What object attributes determine canonical views? MPIK TR 42, Max Planck Institut für biologische Kybernetik, Tübingen, Germany, November 1996.

[158]
T. W. Blickle. Recognition of contour-deleted images. PhD thesis, SUNY at Buffalo, 1989.

[159]
J. F. Blinn. Models of light reflection for computer-synthesized pictures. In W. Richards, editor, Natural computation, pages 214-223. MIT Press, Cambridge, MA, 1988.

[160]
J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, and C.L. Wilson. Evaluation of pattern classifiers for fingerprint and OCR applications. Pattern Recognition, 27:485-501, 1994.

[161]
A. Blum. Learning Boolean functions in an infinite attribute space. Machine Learning, 9:373-386, 1992.

[162]
L. M. Blumenthal. Theory and applications of distance geometry. Clarendon Press, Oxford, 1953.

[163]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. In 18th annual ACM symposium on theory of computing, pages 273-282, 1986.

[164]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam's razor. Information Processing Letters, (24):377-380, 1987.

[165]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36:929-965, 1989.

[166]
B. M. Bly and S. M. Kosslyn. Functional anatomy of object recognition in humans: evidence from PET and fMRI. Current Opinion in Neurology, 10:5-9, 1997.

[167]
A. Bobick and R. Bolles. The representation space paradigm of concurrent evolving object descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:146-156, 1992.

[168]
K. R. Boff, L. Kaufman, and J. P. Thomas, editors. Handbook of perception and human performance. Wiley, New York, 1986.

[169]
R. C. Bolles, P. Horaud, and M. J. Hannah. 3DPO: A three-dimensional part orientation system. In Proceedings IJCAI, pages 1116-1120, 1983.

[170]
R. C. Bolles, H. H. Baker, and M. J. Hannah. The JISCT stereo evaluation. In ARPA Image Understanding Workshop, pages 263-274, 1993.

[171]
R. C. Bolles and R. A. Cain. Recognizing and locating partially visible objects: the local feature focus method. International Journal of Robotics Research, 1:57-82, 1982.

[172]
R. C. Bolles and P. Horaud. 3DPO: A three-dimensional part orientation system. International Journal of Robotics Research, 5:3-26, 1986.

[173]
F. L. Bookstein. Morphometric tools for landmark data: geometry and biology. Cambridge Univ. Press, New York, 1991.

[174]
F. L. Bookstein. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58:313-365, 1996.

[175]
I. Borg and J. Lingoes. Multidimensional Similarity Structure Analysis. Springer, Berlin, 1987.

[176]
S. M. Botros and C. G. Atkeson. Generalization properties of radial basis functions. In D. Touretzky, editor, Neural Information Processing Systems, volume 3, pages 707-713, San Mateo, CA, 1991. Morgan Kaufmann.

[177]
J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math., 52:46-52, 1985.

[178]
R. M. Boynton. Color, hue, and wavelength. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume V, pages 301-347. Academic Press, New York, NY, 1978.

[179]
R. M. Boynton. Color in contour and object perception. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume VIII, pages 173-199. Academic Press, New York, NY, 1978.

[180]
O. J. Braddick. Low-level and high-level processes in apparent motion. Phil. Trans. R. Soc. London B, 290:137-151, 1980.

[181]
G. Bradski and S. Grossberg. Fast-learning VIEWNET architectures for recognizing three-dimensional objects from multiple two-dimensional views. Neural Networks, 8:1053-1080, 1995.

[182]
M. Brady and A. Yuille. An extremum principle for shape from contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:288-301, 1984.

[183]
M. J. Brady. Computational approaches to image understanding. ACM Computing Surveys, 14:3-71, 1982.

[184]
M. J. Brady. Criteria for representations of shape. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and machine vision, pages 39-84. Academic Press, New York, 1983.

[185]
V. Braitenberg. On the texture of brains. Springer-Verlag, New York, 1977.

[186]
J. Braun and D. Sagi. Texture-based tasks are little affected by second tasks requiring peripheral or central attentive fixation. Perception, 20:483-500, 1991.

[187]
M. Bravo and R. Blake. Preattentive vision and perceptual groups. Perception, 19:515-522, 1990.

[188]
C. Bregler and S. M. Omohundro. Nonlinear image interpolation using manifold learning. In D. S. Touretzky G. Tesauro and T. K. Leen, editors, Advances in Neural Information Processing 7, pages 973-980. MIT Press, 1995.

[189]
T. M. Breuel. Adaptive model base indexing. A.I. Memo No. 1008, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[190]
T. M. Breuel. Geometric Aspects of Visual Object Recognition. PhD thesis, MIT, 1992.

[191]
E. Bricolo, T. Poggio, and E. Logothetis. 3D object recognition: a model of view-tuned units. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8. MIT Press, Cambridge, MA, 1996.

[192]
E. Bricolo and H. H. Bülthoff. Translation-invariant features for object recognition. Perception, 21 (supp.2):59, 1992.

[193]
E. Bricolo and H. H. Bülthoff. Further evidence for viewer-centered representations. Perception, 22 (supp):105, 1993.

[194]
E. Bricolo and H. H. Bülthoff. Rotation, translation, size and illumination invariances in 3D object recognition. Invest. Ophthalm. Vis. Science, 34(4):1081, 1993.

[195]
E. Bricolo. On the Representation of Novel Objects: Human Psychophysics, Monkey Physiology and Computational Models. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1996.

[196]
J. C. Brigham. The influence of race on face recognition. In H. D. Ellis, M. A. Jeeves, and F. Newcombe, editors, Aspects of face processing, pages 170-177. Martinus Nijhoff, Dordrecht, 1986.

[197]
R. A. Brooks. Symbolic reasoning among 3D models and 2D images. Artificial Intelligence, 17:285-348, 1981.

[198]
R. A. Brooks. Model-based three-dimensional interpretations of two-dimensional images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5:140-149, 1983.

[199]
L. R. Brooks. Decentralized control of categorization: the role of prior processing episodes. In U. Neisser, editor, Concepts and conceptual development, pages 141-174. Cambridge Univ. Press, 1987.

[200]
R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-160, 1991.

[201]
R. A. Brooks. Intelligence without representation. In Proc. of Foundations of AI Workshop, MIT, June 1987.

[202]
D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems, 2:321-355, 1988.

[203]
T. H. Brown, E. W. Kairiss, and C. L. Keenan. Hebbian synapses: biophysical mechanisms and algorithms. Ann. Rev. Neurosci., 13:475-511, 1990.

[204]
J. M. Brown, N. Weisstein, and J. G. May. Visual search for simple volumetric shapes. Perception and Psychophysics, 51:40-48, 1992.

[205]
D. R. Brown and M. H. Andrews. Visual form discrimination: multidimensional analysis. Perception and Psychophysics, 3:401-406, 1968.

[206]
V. Bruce, P. Healey, M. Burton, T. Doyle, A. Coombes, and A. Linney. Recognising facial surfaces. Perception, 20:755-770, 1991.

[207]
V. Bruce, E. Hanna, N. Dench, P. Healy, and M. Burton. The importance of `mass' in line drawings of faces. Applied Cognitive Psychology, 6:619-628, 1992.

[208]
V. Bruce, M. Burton, , E. Hanna, P. Healey, O. Mason, A. Coombes, R. Fright, and A. Linney. Sex discrimination: how do we tell the difference between male and female faces? Perception, 22:131-152, 1993.

[209]
V. Bruce, A. M. Burton, and N. Dench. What's distinctive about a distinctive face? Quarterly Journal of Experimental Psychology, 47A:119-141, 1994.

[210]
R. Brunelli and T. Poggio. HyperBF networks for real object recognition. In Proceedings IJCAI, pages 1278-1284, Sydney, Australia, 1991.

[211]
R. Brunelli and T. Poggio. Face recognition through geometrical features. In G. Sandini, editor, Proc. 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, volume 588, pages 792-800. Springer Verlag, 1992.

[212]
E. Brunswik. Perception and the representative design of psychological experiments. U. of California Press, Berkeley, CA, 1956.

[213]
A. Bruss and B. K. P. Horn. Passive navigation. Computer Vision, Graphics, and Image Processing, 21:3-20, 1983.

[214]
G. Buchsbaum and A. Gottschalk. Chromaticity coordinates of frequency-limited functions. Journal of the Optical Society of America, 1:885-887, 1984.

[215]
H. H. Bülthoff, K. G. Götz, and M. Herre. Recurrent inversion of visual orientation in the walking fly, drosophila melanogaster. J. Comp. Physiol., 148:471-481, 1982.

[216]
H. H. Bülthoff, J. J. Little, and T. Poggio. A parallel algorithm for real-time computation of motion. Nature, 337:549-553, 1989.

[217]
H. H. Bülthoff, S. Edelman, and E. Sklar. Mapping the generalization space in object recognition. Invest. Ophthalm. Vis. Science Suppl., 32(3):996, 1991.

[218]
H. H. Bülthoff, S. Edelman, and E. Sklar. Generalizing object recognition over 2d and 3d transformations. A. I. Memo, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1992. in preparation.

[219]
H. H. Bülthoff, S. Edelman, and M. J. Tarr. How are three-dimensional objects represented in the brain? Cerebral Cortex, 5:247-260, 1995.

[220]
H. H. Bülthoff and I. Bülthoff. Combining neuropharmacology and behavior to study movement detection in flies. Biological Cybernetics, 55:313-320, 1987.

[221]
H. H. Bülthoff and S. Edelman. The role of binocular stereo cues in visual object recognition. Perception, 19:340, 1990.

[222]
H. H. Bülthoff and S. Edelman. Psychophysical support for a 2-D view interpolation theory of object recognition. Proceedings of the National Academy of Science, 89:60-64, 1992.

[223]
H. H. Bülthoff and S. Edelman. Evaluating object recognition theories by computer graphics psychophysics. In T. Poggio and D. Glaser, editors, Exploring Brain Functions: Models in Neuroscience, pages 139-164. Wiley, New York, 1993. Proc. Dahlem Workshop.

[224]
H. H. Bülthoff and K. G. Götz. Analogous motion illusion in man and fly. Nature, 278:636-638, 1979.

[225]
H. H. Bülthoff and D. Kersten. Interactions between transparency and depth. Perception, 18:A22b, 1989.

[226]
H. H. Bülthoff and H. A. Mallot. Interaction of different modules in depth perception. In Proceedings of the 1st International Conference on Computer Vision, pages 295-305, June 1987.

[227]
H. H. Bülthoff and H. A. Mallot. Interaction of depth modules: stereo and shading. Journal of the Optical Society of America, 5:1749-1758, 1988.

[228]
H. H. Bülthoff and H. A. Mallot. Integration of stereo, shading and texture. In A. Blake and T. Troscianko, editors, AI and the Eye. Wiley, London, UK, 1990.

[229]
H. H. Bülthoff. Figure-ground discrimination in the visual system of drosophila melanogaster. Biological Cybernetics, 41:139-145, 1981.

[230]
H. H. Bülthoff. Drosophila mutants disturbed in visual orientation. ii. mutants affected in movement and position computation. Biological Cybernetics, 45:71-77, 1982.

[231]
H. H. Bülthoff. Shape from X: Stereo, texture, specularity. In M. Landy and A. Movshon, editors, Computational Models of Visual Processing. MIT Press, Cambridge, MA, 1991.

[232]
C. J. C. Burges. Geometry and invariance in kernel based methods. In B. Schoelkopf, C. J. C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA, 1998.

[233]
J. B. Burns, R. Weiss, and E. Riseman. View variation of point-set and line segment features. In Proceedings Image Understanding Workshop, pages 650-659, April 1990.

[234]
J. B. Burns, R. Weiss, and E. Riseman. View variation of point-set and line segment features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:51-68, 1993.

[235]
D. J. Burr. Matching elastic templates. In O. J. Braddick and A. C. Sleigh, editors, Physical and biological processing of images, pages 260-270. Springer-Verlag, Berlin, 1983.

[236]
P. Burt. Smart sensing within a Pyramid Vision Machine. Proc. IEEE, 76:139-153, 1988.

[237]
M. Burton, V. Bruce, and N. Dench. What's the difference between men and women? evidence from facial measurement. Perception, 22:153-176, 1993.

[238]
T. A. Busey, N. P. Brady, and J. E. Cutting. Compensation is unnecessary for the perception of faces in slanted pictures. Perception and Psychophysics, 48:1-11, 1990.

[239]
B. E. Butler, D. J. K. Mewhort, and R. A. Browse. When do letter features migrate? A boundary condition for feature-integration theory. Perception and Psychophysics, 49:91-99, 1991.

[240]
A. Califano and R. Mohan. Multidimensional indexing for recognizing visual shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:373-392, 1994.

[241]
F. W. Campbell and J. G. Robson. Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.), 197:551-566, 1968.

[242]
D. T. Campbell. Pattern matching as an essential in distal knowing. In H. Kornblith, editor, Naturalizing epistemology, pages 49-70. MIT Press, 1985.

[243]
O. I. Camps, C.-Y. Huang, and T. Kanungo. Hierarchical organization of appearance-based parts and relations for object recognition. In Proc. ICCV, pages 685-691. IEEE, 1998.

[244]
J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:679-698, 1986.

[245]
B. Caprile, F. Girosi, and T. Poggio, 1991. in preparation.

[246]
B. Caprile and F. Girosi. A non-deterministic minimization algorithm. A. I. Memo 1254, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, Sept. 1990.

[247]
A. Caramazza and A. E. Hillis. Spatial representation of words in the brain implied by studies of a unilateral neglect patient. 346:267-269, 1990.

[248]
M. Carandini and D. Ferster. A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science, 276:949-952, 1997.

[249]
M Carandini and D J Heeger. Summation and division by neurons in primate visual cortex. Science, 264:1333-1336, 1994.

[250]
S. Carey, R. Diamond, and B. Woods. Development of face recognition-a maturational component? Developmental Psychology, 16:257-269, 1980.

[251]
S. Carey and R. Diamond. From piecemeal to configurational representation of faces. Science, 195:312-314, 1977.

[252]
C. R. Carlson and R. W. Klopfenstein. Spatial frequency model for hyperacuity. Journal of the Optical Society of America, A2:1747-1751, 1985.

[253]
E. H. Carlton. Connection between internal representation of rigid transformation and cortical activity paths. Biological Cybernetics, 59:419-429, 1988.

[254]
G. J. Carman and L. Welch. Three-dimensional illusory contours and surfaces. Nature, 360:585-587, 1992.

[255]
T. K. Carne. The geometry of shape spaces. Proc. Lond. Math. Soc., 61:407-432, 1990.

[256]
G. A. Carpenter, S. Grossberg, and J. Reynolds. ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. CAS/CNS-TR 91-001, Boston University, 1991.

[257]
G. A. Carpenter, S. Grossberg, and D. B. Rosen. Fuzzy ART: An adaptive resonance algorithm for rapid stable classification of analog patterns. In Proc. Intl. Joint Conf. on Neural Networks, pages 411-416, 1991.

[258]
G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. on Neural Networks, 3:698-713, 1992.

[259]
G. A. Carpenter and S. Grossberg. Adaptive resonance theory: Neural network architectures for self-organizing pattern recognition. In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 383-389. North-Holland, Amsterdam, 1990.

[260]
J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional scaling via an N-way generalization of the Eckart-Young decomposition. Psychometrika, 35:283-319, 1970.

[261]
E. C. Carterette and M. P. Friedman. Psychophysical judgment and measurement. vol. 2 in the Handbook of Perception, 1978.

[262]
P. Cavanagh. Local log polar frequency analysis in the striate cortex as a basis for size and orientation invariance. In D. Rose and V. G. Dobson, editors, Models of the visual cortex, pages 146-157. Wiley, New York, NY, 1985.

[263]
P. Cavanagh. Reconstructing the third dimension: interactions between color, texture, motion, binocular disparity and shape. Computer Vision, Graphics, and Image Processing, 37:171-195, 1987.

[264]
P. Cavanagh. Vision is getting easier every day. Perception, 24:1227-1232, 1995. Guest editorial.

[265]
C. B. Cave and S. M. Kosslyn. The role of parts and spatial relations in object identification. Perception, 22:229-248, 1993.

[266]
J. Cerella. Pigeons and perceptrons. Pattern Recognition, 19:431-438, 1987.

[267]
J. Cerella. Pigeon pattern perception: limits on perspective invariance. Perception, 19:141-159, 1990.

[268]
D. Chalmers. Absent qualia, fading qualia, dancing qualia. In T. Metzinger, editor, Conscious experience. Imprint Academic, 1995.

[269]
E. C. Charles and N. K. Logothetis. The responses of middle temporal (mt) neurons to isoluminant stimuli. Invest. Ophthalm. Vis. Science, 30:427, 1989.

[270]
L. Chelazzi, E. Miller, J. Duncan, and R. Desimone. A neural basis for visual search in inferior temporal cortex. Nature, 363:345-347, 1993.

[271]
R. Chellappa, R. Chatterjee, and R. Baghdazian. Texture synthesis and coding using Gaussian Markov field models. IEEE Trans. SMC, 15:298-303, 1985.

[272]
S. Chen and D. L. Donoho. Basis pursuit. In Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, volume 1, pages 41-44, Pacific Grove, CA, 1994. IEEE Comput. Soc. Press.

[273]
S. S. Chen and M. Penna. Shape and motion of nonrigid bodies. Computer Vision, Graphics, and Image Processing, 36:175-207, 1986.

[274]
K. Cheng, T. Hasegawa, K. Saleem, and K. Tanaka. Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J. of Neurophysiology, 71:2269-2280, 1994.

[275]
G. Chevalier, S. Vacher, J. M. Deniau, and M. Desban. Disinhibition as a basic process in the expression of striatal function. I. The striatonigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Research, 334:215-226, 1985.

[276]
R. T. Chin and C. R. Dyer. Model-based recognition in robot vision. ACM Comp. Surv., 18:67-108, 1986.

[277]
P. S. Churchland. Neurophilosophy. MIT Press, Cambridge, MA, 1987.

[278]
P. M. Churchland. A neurocomputational perspective. MIT Press, Cambridge, MA, 1989.

[279]
J. J. Clark and N. Ferrier. Modal control of an attentive visual system. In Proceedings of the 2nd International Conference on Computer Vision, pages 514-523, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[280]
A. Clark. Sensory qualities. Clarendon Press, Oxford, 1993.

[281]
W. F. Clocksin. Perception of surface slant and edge labels from optical flow: a computational approach. Perception, 9:253-269, 1980.

[282]
E.E. Clothiaux, L. N Cooper, and M.F. Bear. Synaptic plasticity in visual cortex: Comparison of theory with experiment. Journal of Physiology, 66:1785-1804, 1991.

[283]
L. Coetzee and E. C. Botha. Fingerprint recognition in low quality images. Pattern Recognition, 26:1441-1460, 1993.

[284]
M. S. Cohen, S. M. Kosslyn, H. C. Breiter, G. J. DiGirolamo, W. L. Thompson, A. K. Anderson, S. Y. Bookheimer, B. R. Rosen, and J. W. Belliveau. Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain, 119:89-100, 1996.

[285]
J. Cohen. Dependency of the spectral reflectance curves of the Munsell color chips. Psychonomic Sciences, 1:369-370, 1964.

[286]
D. Cohn, E. Riskin, and R. Ladner. Theory and practice of vector quantizers trained on small training sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:54-65, 1994.

[287]
H. Cohn. Conformal mappings on Riemann surfaces. McGraw-Hill, New York, 1967.

[288]
Neural networks. special issue of IEEE Computer, March 1988.

[289]
J. H. Connell. Learning shape descriptions: generating and generalizing models of visual objects. A.I. TR No. 853, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1985.

[290]
E. E. Cooper, I. Biederman, and J. E. Hummel. Metric invariance in object recognition: a review and further evidence. Canadian J. Psychol., 46:119-214, 1992.

[291]
E. E. Cooper and I. Biederman. Metric versus viewpoint invariant shape differences in visual object recognition. Invest. Ophthalm. Vis. Sci. Suppl. (Proc. ARVO), 34:S223, 1993. abstract.

[292]
L.A. Cooper. Demonstration of a mental analog of an external rotation. Perception and Psychophysics, 19:296-302, 1976.

[293]
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273-297, 1995.

[294]
J. M. Cortese and B. P. Dyre. Perceptual similarity of shapes generated from Fourier Descriptors. Journal of Experimental Psychology: Human Perception and Performance, 22:133-143, 1996.

[295]
S. Cost and S. Salzberg. A weighted nearest-neighbor algorithm for learning with symbolic features. Machine Learning, 10:57-78, 1993.

[296]
R. M. J. Cotterill, editor. Computer simulation in brain science. Cambridge Univ. Press, Cambridge, 1988.

[297]
G. W. Cottrell, P. Munro, and D. Zipser. Learning internal representations from gray-scale images: An example of extensional programming. In Ninth Annual Conference of the Cognitive Science Society, pages 462-473, Hillsdale, 1987. Erlbaum.

[298]
S. M. Courtney and L. G. Ungerleider. What fMRI has taught us about human vision. Current Opinion in Neurobiology, 7:554-561, 1997.

[299]
T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans. on Information Theory, IT-13:21-27, 1967.

[300]
J. Cowie and W. Lehnert. Information extraction. Communications of the ACM, 39:80-91, 1996.

[301]
I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. Stereo without disparity gradient smoothing: a Bayesian sensor fusion solution. In British Machine Vision Conf., pages 337-346, Berlin, 1992. Springer-Verlag.

[302]
F. H. C. Crick, D. C. Marr, and T. Poggio. An information-processing approach to understanding the visual cortex. In F. Schmitt, editor, The organization of the cerebral cortex. MIT Press, Cambridge, MA, 1981.

[303]
F. Crick and C. Koch. Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2:263-275, 1990.

[304]
R. Cummins. Meaning and mental representation. MIT Press, Cambridge, MA, 1989.

[305]
R. Cummins. Representations, Targets, and Attitudes. MIT Press, Cambridge, MA, 1996.

[306]
J. E. Cutting and R. T. Millard. Three gradients and the perception of flat and curved surfaces. J. of Exp. Psychology: General, 113:198-216, 1984.

[307]
F. Cutzu and S. Edelman. Viewpoint-dependence of response time in object recognition. CS-TR 10, Weizmann Institute of Science, 1992.

[308]
F. Cutzu and S. Edelman. Canonical views in object representation and recognition. Vision Research, 34:3037-3056, 1994.

[309]
F. Cutzu and S. Edelman. Explorations of shape space. CS-TR 95-01, Weizmann Institute of Science, 1995.

[310]
F. Cutzu and S. Edelman. Faithful representation of similarities among three-dimensional shapes in human vision. Proceedings of the National Academy of Science, 93:12046-12050, 1996.

[311]
F. Cutzu and S. Edelman. Representation of object similarity in human vision: psychophysics and a computational model. Vision Research, 38:2227-2257, 1998.

[312]
F. Cutzu and M. J. Tarr. The representation of three-dimensional object similarity in human vision. In SPIE Proceedings on Electronic Imaging: Human Vision and Electronic Imaging II, volume 3016, pages 460-471, San Jose, CA, 1997. SPIE.

[313]
F. Cutzu. Viewpoint effects and visual similarity in object perception as a basis for understanding visual representation. PhD thesis, Weizmann Institute of Science, 1996.

[314]
G. Cybenko. Approximations by superpositions of sigmoidal functions. Math. Control, Signals, Systems, 2:303-314, 1989.

[315]
D. Cyganski and J. A. Orr. Application of tensor theory to object recognition and orientation determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:662-673, 1985.

[316]
A. R. Damasio. The brain binds entities and events by multiregional activation from convergence zones. Neural Computation, 1:123-132, 1989.

[317]
J. G. Daugman. Spatial visual channels in the fourier plane. Vision Research, 24:891-910, 1984.

[318]
J. G. Daugman. An information-theoretic view of analog representation in the striate cortex. In E. L. Schwartz, editor, Computational Neuroscience, pages 403-423. MIT Press, 1988.

[319]
D. Davidson. Essays on actions and events. Clarendon Press, Oxford, 1980.

[320]
D. Davis, D. I. Perrett, and M. H. Harries. Recognition of preferred and non-preferred views. -, -:--, -.

[321]
P. J. Davis and P. Rabinowitz. Methods of numerical integration. Academic Press, New York, 1975.

[322]
L. S. Davis. A survey of edge detection techniques. Computer Graphics and Image Processing, 4:248-270, 1975.

[323]
S. Dawis, R. Shapley, E. Kaplan, and D. Tranchina. The receptive field organization of X-cells in the cat: spatiotemporal coupling and asymmetry. Vision Research, 24:549-564, 1984.

[324]
P. Dayan, G. E. Hinton, and R. M. Neal. The Helmholtz Machine. Neural Computation, 7:889-904, 1995.

[325]
R. L. De Valois and K. K. De Valois. Neural coding of color. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume V, pages 117-166. Academic Press, New York, NY, 1978.

[326]
D. DeCarlo and D. Metaxas. Blended deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:443-448, 1996.

[327]
P. Demartines. Analyse de données par réseaux de neurones auto-organisants. PhD thesis, Inst. National Polytechnique de Grenoble, 1994.

[328]
D. DeMers and G. Cottrell. Nonlinear dimensionality reduction. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 580-587. Morgan Kaufmann, 1993.

[329]
S. Deneve and A. Pouget. Neural basis of object-centered representations. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Neural Information Processing Systems, volume 11, pages --, Cambridge, MA, 1998. MIT Press.

[330]
D. C. Dennett. The intentional stance. MIT Press, Cambridge, MA, 1987.

[331]
D. C. Dennett. When Philosophers Encounter Artificial Intelligence. Daedalus, 117:283-295, 1988.

[332]
D. C. Dennett. Consciousness explained. Little, Brown & Company, Boston, MA, 1991.

[333]
J. B. Deregowski. Real space and represented space: cross-cultural perspectives. Behav. Brain Sciences, 12:51-119, 1989.

[334]
R. Desimone, T. D. Albright, C. G. Gross, and C. J. Bruce. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci., 4:2051-2062, 1984.

[335]
R. Desimone, S. J. Schein, J. Moran, and L. G. Ungerleider. Contour, color and shape analysis beyond the striate cortex. Vision Research, 25:441-452, 1985.

[336]
R. Desimone and L.G. Ungerleider. Neural mechanisms of visual processing in monkeys. In F. Boler and J. Grafman, editors, Handbook of Neuropsychology, volume 2, pages 267-299. Elsevier, Amsterdam, 1989.

[337]
R. Diamond and S. Carey. Why faces are and are not special: an effect of expertise. Journal of experimental psychology, 115(2):107-117, 1986.

[338]
E. Dichterman. Learning via internal representation. NeuroCOLT NC-TR-98-009, London School of Economics, 1998.

[339]
S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. 3-D shape recovery using distributed aspect matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:174-198, 1992.

[340]
M. Dill, R. Wolf, and M. Heisenberg. Visual pattern recognition in Drosophila involves retinotopic matching. Nature, 365:751-753, 1993.

[341]
M. Dill and S. Edelman. Translation invariance in object recognition, and its relation to other visual transformations. A. I. Memo No. 1610, MIT, 1997.

[342]
M. Dill and M. Fahle. Limited translation invariance of human visual pattern recognition. Perception & Psychophysics, 1997. in press.

[343]
M. Dill and M. Fahle. The role of visual field position in pattern-discrimination learning. Proceedings of the Royal Society of London B, 1997. in press.

[344]
M. Dill and M. Heisenberg. Visual pattern memory without shape recognition. Proceedings of the Royal Society of London B, 349:143-152, 1993.

[345]
M. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs, NJ, 1976.

[346]
P. C. Dodwell. Human perception of patterns and objects. In R. Held, H. W. Leibowitz, and H.-L. Teuber, editors, Handbook of sensory physiology: Perception, chapter 15, pages 523-548. Springer-Verlag, Berlin, 1978.

[347]
P. C. Dodwell. The Lie transformation group model of visual perception. Perception and Psychophysics, 34:1-16, 1983.

[348]
R. J. Dolan, G. R. Fink, E. T. Rolls, M. Booth, A. Holmes, R. S. Frackowiak, and K. J. Friston. How the brain learns to see objects and faces in an impoverished context. Nature, 389:596-599, 1997.

[349]
B. Dresp. Local brightness mechanisms sketch out surfaces but do not fill them in: psychophysical evidence in the kanisza square. Perception and Psychophysics, 52:562-570, 1992.

[350]
F. Dretske. Knowledge and the flow of information. MIT Press, Cambridge, MA, 1981.

[351]
F. Dretske. Seeing, believing, and knowing. In D. N. Osherson, S. M. Kosslyn, and J. M. Hollerbach, editors, Visual cognition and action, volume 2, pages 129-148. MIT Press, Cambridge, MA, 1990.

[352]
F. Dretske. Naturalizing the mind. MIT Press, Cambridge, MA, 1995. The Jean Nicod Lectures.

[353]
M. S. Drew, J. Wei, and Z.-N. Li. Illumination-invariant color object recognition via compressed chromaticity histograms of normalized images. CMPT-TR 97-09, Simon Fraser University, 1997.

[354]
J. Driver, G. Baylis, and R. D. Rafal. Preserved figure-ground segregation and symmetry perception in visual neglect. Nature, 360:73-75, 1992.

[355]
M. Drumheller and T. Poggio. On parallel stereo. In Proceedings of IEEE Conference on Robotics and Automation, 1986.

[356]
R. O. Duda and P. E. Hart. Pattern classification and scene analysis. Wiley, New York, 1973.

[357]
J. Duncan and G. W. Humphreys. Visual search and stimulus similarity. Psychol. Review, 96:433-458, 1989.

[358]
R. Durbin and G. Mitchison. A dimension reduction framework for understanding cortical maps. Nature, 343:644-647, 1990.

[359]
S. Duvdevani-Bar, S. Edelman, A. J. Howell, and H. Buxton. A similarity-based method for the generalization of face recognition over pose and expression. In S. Akamatsu and K. Mase, editors, Proc. 3rd Intl. Symposium on Face and Gesture Recognition (FG98), pages 118-123, Washington, DC, 1998. IEEE.

[360]
S. Duvdevani-Bar and S. Edelman. On similarity to prototypes in 3D object representation. CS-TR 95-11, Weizmann Institute of Science, 1995.

[361]
S. Duvdevani-Bar. Similarity to Prototypes in 3D Shape Representation. PhD thesis, Weizmann Institute of Science, 1997.

[362]
M. D'Zmura and G. Iverson. A formal approach to color constancy: the recovery of surface and light source spectral properties using bilinear models. In C. Dowling, F. Roberts, and P. Theuns, editors, Recent Progress in Mathematical Psychology. Erlbaum, Hillsdale, NJ, 1997.

[363]
J. T. Todd E. Mingolla. Perception of solid shape from shading. Biological Cybernetics, 53:137-151, 1986.

[364]
U. Eco. Meaning and mental representations. Indiana University Press, Bloomington, IN, 1988.

[365]
U. Eco. On truth: a fiction. In U. Eco, M. Santambrogio, and P. Violi, editors, Meaning and mental representations, pages 41-59. Indiana University Press, Bloomington, IN, 1988.

[366]
S. Edelman, H. Bülthoff, and D. Weinshall. Exploring representation of 3D objects for visual recognition. In Invest. Ophthalm. Vis. Science, volume 30, page 252, 1989.

[367]
S. Edelman, H. Bülthoff, and D. Weinshall. Integrating information for visual recognition of 3D objects. Perception, 18:517, 1989.

[368]
S. Edelman, S. Ullman, and T. Flash. Reading cursive handwriting by alignment of letter prototypes. International Journal of Computer Vision, 5:303-331, 1990.

[369]
S. Edelman, D. Reisfeld, and Y. Yeshurun. A system for face recognition that learns from examples. CS-TR 91-20, Weizmann Institute of Science, October 1991. to appear in Proc. 2nd European Conf. on Computer Vision.

[370]
S. Edelman, D. Reisfeld, and Y. Yeshurun. Learning to recognize faces from examples. In G. Sandini, editor, Proc. 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, volume 588, pages 787-791. Springer Verlag, 1992.

[371]
S. Edelman, D. Weinshall, H. Bülthoff, and T. Poggio. A model of the acquisition of object representations in human 3D visual recognition. In P. Dario, G. Sandini, and P. Aebischer, editors, Proc. NATO Advanced Research Workshop on Robots and Biological Systems, pages 99-118. Springer Verlag, 1993.

[372]
S. Edelman, H. H. Bülthoff, and I. Bülthoff. Features of the representation space for 3D objects. MPIK-TR 40, Max Planck Institute for Biological Cybernetics, September 1996.

[373]
S. Edelman, H. H. Bülthoff, and I. Bülthoff. Interdependence of feature dimensions in the representation of 3D objects. Invest. Ophthalm. Vis. Sci. Suppl. (Proc. ARVO), April 1996. abstract.

[374]
S. Edelman, F. Cutzu, and S. Duvdevani-Bar. Similarity to reference shapes as a basis for shape representation. In G. W. Cottrell, editor, Proceedings of 18th Annual Conf. of the Cognitive Science Society, pages 260-265, San Diego, CA, July 1996.

[375]
S. Edelman, N. Intrator, and T. Poggio. Complex cells and object recognition, 1997. in preparation.

[376]
S. Edelman, K. Grill-Spector, T. Kushnir, and R. Malach. Towards direct visualization of the internal shape representation space by fmri. Psychobiology, -:--, 1998. to appear.

[377]
S. Edelman, H. H. Bülthoff, and E. Sklar. Task and object learning in visual recognition. A. I. Memo 1348, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, April 1991.

[378]
S. Edelman, H. Bülthoff, and D. Weinshall. Stimulus familiarity determines recognition strategy for novel 3D objects. A.I. Memo No. 1138, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, July 1989.

[379]
S. Edelman and H. H. Bülthoff. Generalization of object recognition in human vision across stimulus transformations and deformations. In Y. Feldman and A. Bruckstein, editors, Proc. 7th Israeli AICV Conference, pages 479-487. Elsevier, 1990.

[380]
S. Edelman and H. H. Bülthoff. Viewpoint-specific representations in 3D object recognition. A.I. Memo No. 1239, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990.

[381]
S. Edelman and H. H. Bülthoff. Modeling human visual object recognition. In Proc. IJCNN-92, volume IV, pages 37-42, 1992.

[382]
S. Edelman and H. H. Bülthoff. Orientation dependence in the recognition of familiar and novel views of 3D objects. Vision Research, 32:2385-2400, 1992.

[383]
S. Edelman and S. Duvdevani-Bar. A model of visual recognition and categorization. Phil. Trans. R. Soc. Lond. (B), 352(1358):1191-1202, 1997.

[384]
S. Edelman and S. Duvdevani-Bar. Similarity-based viewspace interpolation and the categorization of 3D objects. In Proc. Similarity and Categorization Workshop, pages 75-81, Dept. of AI, University of Edinburgh, 1997.

[385]
S. Edelman and S. Duvdevani-Bar. Similarity, connectionism, and the problem of representation in vision. Neural Computation, 9:701-720, 1997.

[386]
S. Edelman and S. Duvdevani-Bar. Visual recognition and categorization on the basis of similarities to multiple class prototypes. A.I. Memo No. 1615, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1997.

[387]
G. M. Edelman and L. Finkel. Neuronal group selection in the cerebral cortex. In G. M. Edelman, W. E. Gall, and W. M. Cowan, editors, Dynamical aspects of neocortical function, pages 653-695. Wiley, New York, 1984.

[388]
S. Edelman and T. Flash. A model of handwriting. Biological Cybernetics, 57:25-36, 1987.

[389]
S. Edelman and N. Intrator. Learning as extraction of low-dimensional representations. In D. Medin, R. Goldstone, and P. Schyns, editors, Mechanisms of Perceptual Learning, pages 353-380. Academic Press, 1997.

[390]
S. Edelman and N. Intrator. Learning as formation of low-dimensional representation spaces. In J. Elman, editor, Proc. 19th Cognitive Science Society Meeting, pages 199-204, Hillsdale, NJ, 1997. Erlbaum.

[391]
S. Edelman and T. Poggio. Bringing the Grandmother back into the picture: a memory-based view of object recognition. A.I. Memo No. 1181, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990. also in Int. J. Pattern Recog. Artif. Intell. 6:37-62, 1992.

[392]
S. Edelman and T. Poggio. Models of object recognition. Current Opinion in Neurobiology, 1:270-273, 1991.

[393]
S. Edelman and T. Poggio. Bringing the Grandmother back into the picture: a memory-based view of object recognition. Int. J. Pattern Recog. Artif. Intell., 6:37-62, 1992.

[394]
S. Edelman and T. Poggio. Integrating visual cues for object segmentation and recognition. Optic News, 15:8-15, May 1989.

[395]
S. Edelman and T. Poggio. Representations in high-level vision: reassessing the inverse optics paradigm. In Proc. DARPA Image Understanding Workshop, pages 944-949, San Mateo, CA, May 1989. Morgan Kaufman.

[396]
S. Edelman and S. Ullman. Reading cursive script by computer. In Proc. 42nd SPSE Conference, pages 179-182, Boston, MA, May 1989.

[397]
S. Edelman and D. Weinshall. Computational vision: a critical review. In R. Watt, editor, Vision and visual dysfunction, volume 14, chapter 4, pages 30-49. Macmillan, London, 1991.

[398]
S. Edelman and D. Weinshall. A self-organizing multiple-view representation of 3D objects. Biological Cybernetics, 64:209-219, 1991.

[399]
S. Edelman and D. Weinshall. Computational approaches to shape constancy. In V. Walsh and J. Kulikowski, editors, Perceptual constancies: why things look as they do. Cambridge University Press, Cambridge, UK, 1997. in press.

[400]
S. Edelman and D. Weinshall. A self-organizing multiple-view representation of 3D objects. A.I. Memo No. 1146, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, August 1989.

[401]
S. Edelman and D. Weinshall. Computational vision: a critical review. A.I. Memo No. 1158, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, October 1989.

[402]
S. Edelman. Line connectivity algorithms for an asynchronous pyramid computer. Computer Vision, Graphics, and Image Processing, 40:169-187, 1987.

[403]
S. Edelman. Reading and writing of cursive script: a computational study. PhD thesis, Weizmann Institute of Science, 1988.

[404]
S. Edelman, 1989. unpublished observations.

[405]
S. Edelman. Reading cursive handwriting. Perception, 18:524, 1989.

[406]
S. Edelman. Features of recognition. CS-TR 91-10, Weizmann Institute of Science, 1991.

[407]
S. Edelman. A network model of object recognition in human vision. In H. Wechsler, editor, Neural networks for perception, volume 1, pages 25-40. Academic Press, New York, 1991.

[408]
S. Edelman. On learning to recognize 3D objects from examples. CS-TR 91-3, Weizmann Institute of Science, 1991.

[409]
S. Edelman. Visual perception. In S. Shapiro, editor, Encyclopedia of AI, volume 2, pages 1655-1663. Wiley, New York, 1991.

[410]
S. Edelman. Class similarity and viewpoint invariance in the recognition of 3D objects. CS-TR 92-17, Weizmann Institute of Science, 1992.

[411]
S. Edelman. Representing 3D objects by sets of activities of receptive fields. CS-TR 92-19, Weizmann Institute of Science, 1992.

[412]
S. Edelman. On learning to recognize 3D objects from examples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:833-837, 1993.

[413]
S. Edelman. Representation, Similarity, and the Chorus of Prototypes. CS-TR 93-10, Weizmann Institute of Science, 1993. to appear in Minds and Machines, 1995.

[414]
S. Edelman. Representing 3D objects by sets of activities of receptive fields. Biological Cybernetics, 70:37-45, 1993.

[415]
S. Edelman. Biological constraints and the representation of structure in vision and language. Psycoloquy, 5(57), September 1994. FTP host: ftp.princeton.edu; FTP directory: /pub/harnad/Psycoloquy/1994.volume.5/; file name: psyc.94.5.57.language-network.3.edelman.

[416]
S. Edelman. Representation without reconstruction. Computer Vision, Graphics, and Image Processing, 60:92-94, 1994.

[417]
S. Edelman. Class similarity and viewpoint invariance in the recognition of 3D objects. Biological Cybernetics, 72:207-220, 1995.

[418]
S. Edelman. Representation of similarity in 3D object discrimination. Neural Computation, 7:407-422, 1995.

[419]
S. Edelman. Representation, Similarity, and the Chorus of Prototypes. Minds and Machines, 5:45-68, 1995.

[420]
S. Edelman. Why have lateral connections in the visual cortex? In J. Sirosh, R. Miikkulainen, and Y. Choe, editors, Lateral Interactions in the Cortex: Structure and Function. electronic book, http://www.cs.utexas.edu/users/nn/lateral_interactions_book/cover.html edition, 1995.

[421]
S. Edelman. Representation is representation of similarity. CS-TR 96-08, Weizmann Institute of Science, 1996. submitted to Behavior and Brain Sciences.

[422]
S. Edelman. Computational theories of object recognition. Trends in Cognitive Science, 1:296-304, 1997.

[423]
S. Edelman. Receptive fields for vision: from hyperacuity to object recognition. In R. Watt, editor, Vision. MIT Press, Cambridge, MA, 1997. in press.

[424]
S. Edelman. Vision reanimated. In Y. Aloimonos, S. Carlsson, and J.-O. Eklundh, editors, Proc. 7th Rosenön Workshop on Computer Vision. L. Erlbaum, Hillsdale, NJ, 1997. forthcoming.

[425]
S. Edelman. Representation and recognition in vision. MIT Press, Cambridge, MA, 1998. forthcoming.

[426]
S. Edelman. Representation is representation of similarity, 1998. Behavioral and Brain Sciences, to appear.

[427]
S. Edelman. Spanning the face space. Journal of Biological Systems, 6:--, 1998. in press.

[428]
M. Eden. On the formalization of handwriting. In Proc. Symp. Appl. Math., volume 12, pages 83-88, Providence, RI, 1961. Amer. Math. Soc.

[429]
B. Efron and R. Tibshirani. An introduction to the bootstrap. Chapman and Hall, London, 1993.

[430]
P. D. Eimas and A. M. Galaburda, editors. Neurobiology of cognition. MIT Press, Cambridge, MA, 1990.

[431]
H. Eisler. Similarity in the continuum of heaviness with some methodological and theoretical considerations. Scand. J. Psychol., 1:69-81, 1960.

[432]
G. Ekman and R. Lindman. Multidimensional ratio scaling and multidimensional similarity. Reports from the Psychological Laboratories 103, University of Stockholm, 1961.

[433]
M. G. Eley. Identifying rotated letter-like symbols. Memory & Cognition, 10:25-32, 1982.

[434]
R. Ellis, D. A. Allport, G. W. Humphreys, and J. Collis. Varieties of object constancy. Q. Journal Exp. Psychol., 41A:775-796, 1989.

[435]
J. L. Elman and D. Zipser. Learning the hidden structure of speech. J. of the Acoustical Society of America, 83:1615-1626, 1988.

[436]
J. L. Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

[437]
M. A. Erickson and J. K. Kruschke. Rules and exemplars in category learning. -, -:--, 1996. submitted.

[438]
M. W. Fahle, S. Edelman, and T. Poggio. Fast perceptual learning in hyperacuity. Vision Research, 35:3003-3013, 1995.

[439]
M. W. Fahle and S. Edelman. Long-term learning in vernier acuity: influence of stimulus orientation, range and of feedback. Vision Research, 33:397-412, 1993.

[440]
M. Fahle and C. Koch. Spatial displacement, but not temporal asynchrony, destroys figural binding. Vision Research, 35:491-494, 1995.

[441]
M. W. Fahle and T. Poggio. Visual hyperacuity: spatiotemporal interpolation in human vision. Proceedings of the Royal Society of London B, 213:451-477, 1981.

[442]
M. W. Fahle. Non-fusable stimuli and the role of binocular inhibition in normal and pathological vision, especially strabismus. Documenta Ophthalmologica, 55:323-340, 1983.

[443]
M. Fahle. Figure-ground discrimination from temporal information. Proceedings of the Royal Society of London B, 254:199-203, 1993.

[444]
M. W. Fahle. Parallel, semi-parallel, and serial processing of visual hyperacuity. In Proc. SPIE Conf. on Electronic Imaging: science and technology, Santa Clara, CA, February 1990. also in Vision Reseach 31, 2149-2184 (1991).

[445]
S. E. Fahlman. NETL: a system for representing and using real-world knowledge. MIT Press, Cambridge, MA, 1979.

[446]
J.-C. Falmagne. Elements of psychophysical theory. Clarendon Press, Oxford, 1985.

[447]
T. J. Fan, G. Medioni, and R. Nevatia. Recognizing 3D objects using surface descriptions. In Proceedings of the 2nd International Conference on Computer Vision, pages 474-481, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[448]
M. J. Farah, R. Rochlin, and K. L. Klein. Orientation invariance and geometric primitives in shape recognition. Cognitive Science, 18:325-344, 1994.

[449]
M. J. Farah. Visual agnosia. MIT Press, Cambridge, MA, 1990.

[450]
J. D. Farmer, N. H. Packard, and A. S. Perelson. The immune system, adaptation, and machine learning. Physica D, 22:187-204, 1986.

[451]
H. Feigl. The 'Mental' and the 'Physical'. In H. Feigl, M. Scriven, and G. Maxwell, editors, Concepts, theories, and the mind-body problem. U. of Minnesota Press, Minneapolis. MN, 1958.

[452]
J. A. Feldman and D. H. Ballard. Connectionist models and their properties. Cognitive Science, 6:205-254, 1982.

[453]
L. B. Feldman and S. Bentin. Morphological analysis of disrupted morphemes. Q. Journal Exp. Psychol, 47A:407-435, 1994.

[454]
J. Feldman. Constructing perceptual categories. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 244-250, 1992.

[455]
D. J. Felleman and D. C. Van Essen. Distributed hierarchial processing in primate cerebral cortex. Cerebral Cortex, 1:1-47, 1991.

[456]
M. Fendick and G. Westheimer. Effects of practice and the separation of test targets on foveal and perifoveal hyperacuity. Vision Research, 23:145-150, 1983.

[457]
M. Ferraro and T. M. Caelli. Lie transformation groups, integral transforms, and invariant pattern recognition. Spatial Vision, 8:33-44, 1994.

[458]
D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system: evidence for a local association field. Vision Research, 33:173-193, 1993.

[459]
D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, A 4:2379-2394, 1987.

[460]
D. J. Field. Scale-invariance and self-similar wavelet transforms: An analysis of natural scenes and mammalian visual systems. In M. Farge, J. Hunt, and T. Vassilicos, editors, Wavelets, Fractals and Fourier Transforms: New Developments and new applications, pages 151-193. Oxford University Press, 1993.

[461]
D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559-601, 1994.

[462]
S. Fillenbaum and A. Rapoport. Structures in the subjective lexicon. Academic Press, New York, 1979.

[463]
S. Finch and N. Chater. A hybrid approach to the automatic learning of linguistic categories. available via ftp from archive.cis.ohio-state.edu as /pub/neuroprose/finch.hybrid.ps.Z, October 1991.

[464]
D. J. Finney. Probit analysis. Cambridge University Press, Cambridge, 1971.

[465]
A. Fiorentini and N. Berardi. Perceptual learning specific for orientation and spatial frequency. Nature, 287:453-454, 1981.

[466]
M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24:381-395, 1981.

[467]
M. A. Fischler and O. Firschein, editors. Readings in computer vision: issues, problems, principles and paradigms. Morgan Kaufmann, Los Altos, CA, 1987.

[468]
J. Fiser, I. Biederman, and E. E. Cooper. To what extent can matching algorithms based on direct outputs of spatial filters account for human shape recognition? Spatial Vision, 10:237-271, 1997.

[469]
W. T. Fishback. Projective and Euclidean Geometry. Wiley, New York, 1969.

[470]
C. B. Fisher and M. P. Fracasso. The Goldmeier effect in adults and children: environmental, retinal, and phenomenal influences on judgements of visual symmetry. Perception, 16:29-39, 1987.

[471]
M. J. Flannagan, L. S. Fried, and K. J. Holyoak. Distributional expectations and the induction of category structure. Journal of Experimental Psychology: Learning, Memory and Cognition, 12:241-256, 1986.

[472]
T. Flash and E. Henis. Arm trajectory modification during reaching towards visual targets. J. Cog. Neurosci., 3:220-230, 1991.

[473]
T. Flash and N. Hogan. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci., 5:1688-1703, 1985.

[474]
T. E. Flick and L. E. Jones. A combinatorial approach for classification of patterns with missing information and random orientation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:482-490, 1986.

[475]
J. Fodor and Z. Pylyshyn. Connectionism and cognitive architecture: A critical analysis. Cognition, 28:3-71, 1988.

[476]
J. A. Fodor. RePresentations. MIT Press, Cambridge, MA, 1981.

[477]
J. A. Fodor. The modularity of mind. MIT Press, Cambridge, MA, 1983.

[478]
J. A. Fodor. Psychosemantics. MIT Press, Cambridge, MA, 1987.

[479]
P. Foldiak. Learning invariance from transformation sequences. Neural Computation, 3:194-200, 1991.

[480]
M. D. Folk and R. D. Luce. Effects of stimulus complexity on mental rotation rate of polygons. Journal of Experimental Psychology: Human Perception and Performance, 13:395-404, 1987.

[481]
K. I. Forster. Lexical acquisition and the modular lexicon. Language and cognitive processes, 1:87-108, 1985.

[482]
K. I. Forster. Masked priming with graphemically related forms: repetition or partial activation? Quarterly J. Exp. Psychol., 39A:211-251, 1987.

[483]
D. Forsyth, J. L. Mundy, A. Zisserman, and C. M. Brown. Invariance - a new framework for vision. In Proceedings of the 3rd International Conference on Computer Vision, pages 598-605, Osaka, 1990. IEEE, Washington, DC.

[484]
D. Forsyth and A. Zisserman. Mutual illumination. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 466-473, San-Diego, CA, 1989.

[485]
D. H. Foster and J. I. Kahn. Internal representations and operations in the visual comparison of transformed patterns: effects of pattern point-inversion, positional symmetry, and separation. Biological Cybernetics, 51:305-312, 1985.

[486]
D. H. Foster and P. A. Ward. Asymmetries in oriented-line detection indicate two orthogonal filters in early vision. Proceedings of the Royal Society of London B, 243:75-81, 1991.

[487]
D. H. Foster. A hypothesis connecting visual pattern recognition and apparent motion. Kybernetik, 13:151-154, 1973.

[488]
W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:891-906, 1991.

[489]
W. T. Freeman. Exploiting the generic view assumption to estimate scene parameters. In Proceedings of the 3rd International Conference on Computer Vision, pages 347-356, Washington, DC, 1993. IEEE.

[490]
B. J. Frey, A. Colmenarez, and T. S. Huang. Mixtures of local linear subspaces for face recognition. In Proc. ICCV, pages 32-37. IEEE, 1998.

[491]
J. J. Freyd. The mental representation of movement when static stimuli are viewed. Perception and Psychophysics, 33:575-581, 1983.

[492]
J. J. Freyd. Five hunches about perceptual processes and dynamic representations. In D. E. Meyer and S. Kornblum, editors, Attention and Performance, volume XIV, chapter 5, pages 99-119. MIT Press, 1993.

[493]
L. S. Fried and K. J. Holyoak. Induction of category distributions: a framework for classification learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 10:234-257, 1984.

[494]
J. Friedman. Flexible metric nearest neighbor classification. Technical report, Stanford University, 1994.

[495]
J. P. Frisby. Seeing. Oxford University Press, Oxford, 1979.

[496]
K. J. Friston. Imaging cognitive anatomy. Trends in Cognitive Sciences, 1:21-27, 1997.

[497]
R. Frost, K. I. Forster, and A. Deutsch. What can we learn from the morphology of Hebrew. -, -:--, 1995. submitted.

[498]
K. S. Fu. Tree languages and syntactic pattern recognition. In C. H. Chen, editor, Pattern Recognition and Artificial Intelligence, pages 257-291. Academic Press, New York, 1976.

[499]
A. Fujii. Corpus-Based Word Sense Disambiguation. PhD thesis, Tokyo Institute of Technology.

[500]
I. Fujita, K. Tanaka, M. Ito, and K. Cheng. Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360:343-346, 1992.

[501]
K. Fukushima. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks, 1:119-130, 1988.

[502]
W. Gale, K. Church, and D. Yarowsky. A method for disambiguating word senses in a large corpus. Computers and the Humanities, 26:415-439, 1992.

[503]
E. Galin and S. Akkouche. Métamorphose d'objets tridimensionnels: quelques méthodes d'accélération. Revue Techniques et Sciences Informatiques, 15:329-350, 1996.

[504]
C. R. Gallistel. The organization of learning. MIT Press, Cambridge, MA, 1990.

[505]
E. Gamble, D. Geiger, T. Poggio, and D. Weinshall. Labeling edges and the integration of low-level visual modules. IEEE Trans. SMC, 19(6), 1989.

[506]
C. P. Garbin. Visual-touch perceptual equivalence for shape information in children and adults. Perception and Psychophysics, 48:271-279, 1990.

[507]
M. R. Garey and David S. Johnson. Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, San Francisco, CA, 1979.

[508]
M. Gasser. Transfer in a connectionist model of the acquisition of morphology. CogSci TR 147, Indiana University, Bloomington, IN, 1995. an expanded version of a paper presented at the Morphology Workshop, Nijmegen, June 13, 1995.

[509]
I. Gauthier, A. W. Anderson, M. J. Tarr, P. Skudlarski, and J. C. Gore. Levels of categorization in visual recognition studied with functional MRI. Current Biology, 7:645-651, 1997.

[510]
I. Gauthier, P. Williams, M. J. Tarr, and J. Tanaka. Training `greeble' experts: A framework for studying expert object recognition processes. Vision Research, pages --, 1998. in press.

[511]
I. Gauthier and M. J. Tarr. Becoming a `Greeble' expert: Exploring the face recognition mechanism. Vision Research, 37:1673-1682, 1997.

[512]
I. Gauthier and M. J. Tarr. Orientation priming of novel shapes in the context of viewpoint-dependent recognition. Perception, 26:51-73, 1997.

[513]
Y. Gdalyahu and D. Weinshall. Automatic hierarchical classification of silhouettes of 3D objects. In Proc. ICCV, pages 787-793. IEEE, 1998.

[514]
Y. Gdalyahu and D. Weinshall. Flexible syntactic matching of curves. In Proc. CVPR, volume 2, pages 123-139. IEEE, 1998.

[515]
S. Geman, D. Geman, and C. Graffigne. Locating texture and object boundaries. In P. A. Devijver and J. Mittler, editors, Pattern recognition theory and applications. Springer-Verlag, Heidelberg, 1987.

[516]
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721-741, 1984.

[517]
S. Geman and C.-R. Hwang. Nonparametric maximum likelihood estimation by the method of sieves. Annals of statistics, 10:400-414, 1982.

[518]
S. Geman. Minimum Description Length priors for object recognition. In Challenging the frontiers of knowledge using statistical science (Proc. JSM'96), 1996. in press.

[519]
A. Georgopoulos, J. T. Lurito, M. Petrides, A. B. Schwartz, and J. T. Massey. Mental rotation of the neuronal population vector. Science, 243:234-236, 1988.

[520]
P. C. Gerhardstein and I. Biederman. 3D orientation invariance in visual object recognition. Invest. Ophthalm. Vis. Science Suppl., 32:338, 1991.

[521]
A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer Academic Publishers, Boston, 1992.

[522]
Z. Ghahramani and G. E. Hinton. Hierarchical non-linear factor analysis and topographic maps. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Neural Information Processing Systems, volume 11, pages --, Cambridge, MA, 1998. MIT Press.

[523]
G. M. Ghose, R. D. Freeman, and I. Ohzawa. Local intracortical connections in the cat's visual cortex: postnatal development and plasticity. J. Neurophysiol., 72:1290-1303, 1994.

[524]
B. S. Gibson and M. A. Peterson. Does orientation-independent object recognition precede orientation-dependent recognition? Evidence from a cuing paradigm. Journal of Experimental Psychology: Human Perception and Performance, 20:299-316, 1994.

[525]
J. J. Gibson. Adaptation, after-effect, and contrast in the perception of curved lines. J. Exp. Psychol., 16:1-31, 1933.

[526]
J. J. Gibson. The perception of the visual world. Houghton Mifflin, Boston, MA, 1950.

[527]
J. J. Gibson. The senses considered as perceptual systems. Houghton Mifflin, Boston, MA, 1966.

[528]
J. J. Gibson. The ecological approach to visual perception. Houghton Mifflin, Boston, MA, 1979.

[529]
Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and representing aspect graphs of polyhedral objects. In Proceedings of the 2nd International Conference on Computer Vision, pages 30-39, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[530]
C. D. Gilbert. Neuronal and synaptic organization in the cortex. In P. Rakic and W. Singer, editors, Neurobiology of Neocortex, pages 219-240. Wiley, New York, NY, 1988.

[531]
C. D. Gilbert. Neuronal dynamics and perceptual learning. Current Biology, 4:627-629, 1994.

[532]
A. L. Gilchrist. Perceived lightness depends on perceived spatial arrangement. Science, 195:185-187, 1977.

[533]
F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219-269, 1995. (PostScript)

[534]
F. Girosi and T. Poggio. Networks and the best approximation property. A.I. Memo 1164, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990.

[535]
M. A. Gluck and R. Granger. Computational models of the neural bases of learning and memory. Ann. Rev. Neurosci., 16:667-706, 1993.

[536]
C. Goad. Fast 3D model-based vision. In A. P. Pentland, editor, From pixels to predicates, pages 371-391. Ablex, Norwood, NJ, 1986.

[537]
K. Goebel and W. A. Kirk. Topics in metric fixed point theory. Number 28 in Cambridge studies in advanced mathematics. Cambridge Univ. Press, 1990.

[538]
R. L. Goldstone, D. Medin, and Gentner. Relational similarity and the nonindependence of features in similarity judgments. Cognitive Psychology, 23:222-264, 1991.

[539]
R. L. Goldstone and L. W. Barsalou. Reuniting perception and cognition: the perceptual bases of similarity and rules. Cognition, -:--, 1998. in press.

[540]
R. L. Goldstone. The role of similarity in categorization: providing a groundwork. Cognition, 52:125-157, 1994.

[541]
M. A. Goodale, A. D. Milner, L. S. Jakobson, and D. P. Carey. A neurological dissociation between perceiving objects and grasping them. Nature, 349:154-156, 1991.

[542]
N. Goodman. Seven Strictures on Similarity. Bobbs Merill, Indianapolis, 1972.

[543]
N. Goodman. The structure of appearance. Reidel, Dordrecht, 1977.

[544]
W. J. Gordon and J. A. Wixom. Shepard's method of `Metric Interpolation' to bivariate and multivariate interpolation. Mathematics of Computation, 32:253-264, 1978.

[545]
K. Chidananda Gowda and E. Diday. Symbolic clustering using a new similarity measure. smc, 22:368-378, 1992.

[546]
R. Granger and G. Lynch. Higher olfactory processes: perceptual learning and memory. Current Opinion in Neurobiology, 1:209-214, 1991.

[547]
P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica, 9D:189-208, 1983.

[548]
C. M. Gray, P. König, A. K. Engel, and W. Singer. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338:334-337, 1989.

[549]
D. M. Green and J. A. Swets. Signal detection theory and psychophysics. Wiley, New York, 1966.

[550]
G. Grefenstette. Explorations in Automatic thesaurus discovery. Kluwer, Dordrecht, 1994.

[551]
R. L. Gregory. Illusions and hallucinations. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume IX, pages 337-357. Academic Press, New York, NY, 1978.

[552]
R. Gregory. Questions of pattern and object perception by man and computer. In J. Long and A. Baddeley, editors, Attention and Performance IX, pages 97-117. Erlbaum, Hillsdale, NJ, 1981.

[553]
R. A. M. Gregson and L. A. Britton. The size-weight illusion in 2D nonlinear psychophysics. Perception and Psychophysics, 48:343-356, 1990.

[554]
R. A. M. Gregson. Psychometrics of similarity. Academic Press, New York, 1975.

[555]
R. A. M. Gregson. Nonlinear psychophysical dynamics. Erlbaum, Hillsdale, NJ, 1988.

[556]
U. Grenander. General pattern theory. Oxford University Press, Oxford, UK, 1993.

[557]
P. Grice. Studies in the ways of words. Harvard University Press, Cambridge, MA, 1989.

[558]
K. Grill Spector, S. Edelman, and R. Malach. Anatomical origin and computational role of diversity in the response properties of cortical neurons. In D. S. Touretzky G. Tesauro and T. K. Leen, editors, Advances in Neural Information Processing 7, pages 117-124. MIT Press, 1995.

[559]
K. Grill-Spector, T. Hendler, T. Kushnir, I. Kahn, S. Edelman, Y. Itzchak, and R. Malach. Hierarchy of visual object-processing stages revealed in human occipital lobe: an fMRI study, 1996.

[560]
K. Grill-Spector, T. Kushnir, S. Edelman, Y. Itzchak, and R. Malach. Convergence of visual cues in object-related areas of the human occipital lobe. Neuron, -:--, 1998. in press.

[561]
K. Grill-Spector, T. Kushnir, T. Hendler, S. Edelman, Y. Itzchak, and R. Malach. A sequence of early object processing stages revealed by fMRI in human occipital lobe. Human Brain Mapping, -:--, 1998. in press.

[562]
J. Grimes. On the failure to detect changes in scenes across saccades. In Kathleen Akins, editor, Perception, volume 5 of Vancouver Studies in Cognitive Science, chapter 4. Oxford University Press, New York, 1995.

[563]
W. E. L. Grimson and T. Lozano-Pérez. Localizing overlapping parts by searching the interpretation tree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9:469-482, 1987.

[564]
W. E. L. Grimson. From Images to Surfaces. MIT Press, Cambridge, MA, 1981.

[565]
W. E. L. Grimson. Computational experiments with a feature-based stereo algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:17-34, 1985.

[566]
W. E. L. Grimson. Model-Based Vision. MIT Press, Cambridge, MA, 1990.

[567]
W. E. L. Grimson. Object recognition by computer: The role of geometric constraints. 1990.

[568]
D. H. Grosof, R. M. Shapley, and M. J. Hawken. Macaque V1 neurons can signal `illusory' contours. Nature, 365:550-552, 1993.

[569]
C. G. Gross, C. E. Rocha-Miranda, and D. B. Bender. Visual properties of cells in inferotemporal cortex of the macaque. J. Neurophysiol., 35:96-111, 1972.

[570]
C. G. Gross and M. Mishkin. The neural basis of stimulus equivalence across retinal translation. In S. Harnad, R. W. Doty, L. Goldstein, J. Jaynes, and G. Krauthamer, editors, Lateralization in the nervous system. Academic Press, New York, NY, 1977.

[571]
S. Grossberg and E. Mingolla. Neural dynamics of form perception: Boundary completion, illusory figures and neon color spreading. Psychological Review, 92:173-211, 1985.

[572]
S. Grossberg. Figure-ground separation by visual cortex. In G. Adelman and B. H. Smith, editors, Encyclopedia of neuroscience. Elsevier, Amsterdam, 1996.

[573]
L. Guthrie, J. Pustejovsky, Y. Wilks, and B. Slator. The role of lexicons in natural language processing. Communications of the ACM, 39:63-72, 1996.

[574]
J. Gyoba, T. Yanagida, and S. Akamatsu. View-dependent and view-independent properties in human object recognition. Electronics and Communications in Japan (Part 3), 79:158-165, 1996.

[575]
J. Hadamard. Lectures on the Cauchy problem in linear partial differential equations. Yale University Press, New Haven, CT, 1923.

[576]
P. J. B. Hancock, R. J. Baddeley, and L. S. Smith. The principal components of natural images. Network, 3:61-70, 1992.

[577]
P. J. B. Hancock, A. M. Burton, and V. Bruce. Face processing: human perception and principal components analysis. Memory and Cognition, 24:26-40, 1996. in press. (PostScript)

[578]
D. J. Hand. Discrimination and classification. Wiley, New York, 1981.

[579]
S. J. Hanson and M. A. Gluck. Spherical units as dynamic consequential regions: implications for attention, competition and categorization. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 656-664. Morgan Kaufmann, 1993.

[580]
R. M. Haralick and J. S. Lee. The facet approach to optic flow. In L. Baumann, editor, Proceedings Image Understanding Workshop, pages 84-93, McLean, VA, 1983. Scientific Applications International Corporation.

[581]
R. M. Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE, 67:786-804, 1979.

[582]
R. M. Haralick. Digital step edges from zero crossings of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:58-68, 1984.

[583]
S. Harnad, editor. Categorical Perception: The Groundwork of Cognition. Cambridge University Press, New York, 1987.

[584]
S. Harnad. The symbol grounding problem. Physica D, 42:335-346, 1990.

[585]
C. S. Harris and A. R. Gibson. Is orientation-specific color adaptation in human vision due to edge detectors, afterimages, or `dipoles'? Science, 162:1506-1507, 1968.

[586]
C. S. Harris. Insight or out of sight?: two examples of perceptual plasticity in the human adult. In C. S. Harris, editor, Visual Coding and Adaptability, pages 95-149. Erlbaum, Hillsdale, NJ, 1980.

[587]
H. K. Hartline. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol., 121:400-415, 1938.

[588]
E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks with Gaussian hidden units as universal approximations. Neural Computation, 2:210-215, 1990.

[589]
M. E. Hasselmo, M. A. Wilson, B. P. Anderson, and J. M. Bower. Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harbor Symposia on Quantitative Biology, LV:599-610, 1990.

[590]
M. E. Hasselmo, E. Schnell, and E. Barkai. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in hippocampal region CA3. J. Neurosci., 15:5249-5262, 1995.

[591]
M. E. Hasselmo. Neuromodulation and cortical function: Modeling the physiological basis of behavior. Behav. Brain Res., 67:1-27, 1995.

[592]
B. F. Hatfield. Introduction to quantum field theory, path integrals, and strings. In S. T. Yau, editor, Mathematical aspects of string theory, volume 1 of Advanced series in mathematical physics, chapter 1, pages 1-12. World Scientific, Singapore, 1987.

[593]
D. Haussler. Generalizing the PAC model for neural net and other learning applications. UCSC-CRL 89-30, U. of California, Santa Cruz, 1989.

[594]
D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78-150, 1992.

[595]
M J Hawken and A J Parker. Spatial properties of neurons in the monkey striate cortex. Proc. R. Soc. Lon. B, 231:251-288, 1987.

[596]
R. D. Hawkins, T. W. Abrams, T. J. Carew, and E. R. Kandel. A cellular mechanism of classical conditioning in aplysia: Activity-dependent amplification of presynaptic facilitation. Science, 219:400-404, 1983.

[597]
Jr. Hayes, K. C. Reading handwritten words using hierarchical relaxation. Computer Vision, Graphics, and Image Processing, 14:344-364, 1980.

[598]
S. M. Haynes and R. Jain. A qualitative approach for recovering depth in dynamic scenes. In Proc. IEEE Workshop on Computer Vision, pages 66-71, Washington, DC, 1987. IEEE.

[599]
W. G. Hayward and M. J. Tarr. Testing conditions for viewpoint invariance in object recognition. Journal of Experimental Psychology: Human Perception and Performance, 23:1511-1521, 1997.

[600]
W. G. Hayward. Effects of Outline Shape in Object Recognition. PhD thesis, Yale University, 1995.

[601]
W. G. Hayward. Effects of outline shape in object recognition. Journal of Experimental Psychology: Human Perception and Performance, pages --, 1997. in press.

[602]
Z. J. He and K. Nakayama. Surfaces versus features in visual search. Nature, 359:231-233, 1992.

[603]
D. O. Hebb. The organization of behavior. Wiley, 1949.

[604]
D. J. Heeger, E. P. Simoncelli, and J. Anthony Movshon. Computational models of cortical visual processing. Proceedings of the National Academy of Science, 93:623-627, 1996.

[605]
D. Heeger and G. Hager. Egomotion and the stabilized world. In Proceedings of the 2nd International Conference on Computer Vision, pages 435-440, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[606]
D. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9:181-198, 1992.

[607]
Y. Hel-Or and S. Edelman. A new approach to qualitative stereo. In S. Ullman and S. Peleg, editors, Proc. 12th ICPR, pages 316-320, Jerusalem, Oct. 1994 1994. IEEE Press.

[608]
Y. Hel-Or and P. C. Teo. A common framework for steerability, motion estimation, and invariant feature detection, January 1996. submitted.

[609]
R. Held, H. W. Leibowitz, and H.-L. Teuber, editors. Handbook of sensory physiology: Perception. Springer-Verlag, Berlin, 1978.

[610]
R. Held and A. V. Hein. Adaptation of disarranged hand-eye coordination contingent upon re-afferent stimulation. Perceptual and Motor Skills, 8:87-90, 1958.

[611]
J. Henderson and M. Marcus. Description based parsing in a connectionist network. Technical Report IRCS Report 94-12, U. of Pennsylvania, September 1994.

[612]
L. Henderson, editor. Orthographies and Reading : Perspectives from Cognitive Psychology, Neuropsychology and Linguistics. Erlbaum, Hillsdale, NJ, 1984.

[613]
E. Henis and T. Flash. Mechanisms underlying the generation of averaged modified trajectories. Biological Cybernetics, 1994. in press.

[614]
E. Hering. Ueber die Grenzen der Sehschaerfe. In Bericht. Mathem.-Physikal. Klasse Saechs., page 16. Ges. Wissenschaften, Leipzig, 1899.

[615]
R. J. Herrnstein. Objects, categories, and discriminative stimuli. In H. L. Roitblat, T. G. Bever, and H. S. Terrace, editors, Animal Cognition, pages 233-261, Hillsdale, NJ, 1984. Erlbaum.

[616]
E. C. Hildreth, N. M. Grzywacz, E. H. Adelson, and V. K. Inada. The perceptual buildup of three-dimensional structure from motion. A.I. Memo No. 1141, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[617]
E. C. Hildreth and C. Koch. The analysis of visual motion: from computational theory to neuronal mechanisms. Ann. Rev. Neurosci., 10:477-533, 1987.

[618]
E. C. Hildreth and S. Ullman. The computational study of vision. A.I. Memo No. 1038, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1988.

[619]
E. C. Hildreth. The measurement of visual motion. MIT Press, Cambridge, MA, 1984.

[620]
E. C. Hildreth. Edge detection. In S. Shapiro, editor, Encyclopedia of artificial intelligence, pages 257-267. John Wiley, New-York, NY, 1987.

[621]
G. E. Hinton, P. Dayan, B. J. Frey, and R. Neal. The wake-sleep algorithm for unsupervised neural networks. Science, 268:1158-1161, 1995.

[622]
G. E. Hinton and Z. Ghahramani. Generative models for discovering sparse distributed representations. Philosophical Transactions of the Royal Society B, 352(1358):1177-1190, 1997.

[623]
G. E. Hinton and L. M. Parsons. Scene-based and viewer-centered representations for comparing shapes. Cognition, 30:1-35, 1988.

[624]
G. E. Hinton. Distributed representations. Technical Report CMU-CS 84-157, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1984.

[625]
G. E. Hinton. Mapping part-whole hierarchies into connectionist networks. ai, 46:47-75, 1990.

[626]
D. L. Hintzman. Twenty-five years of learning and memory: was the cognitive revolution a mistake? In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 16, pages 360-391. MIT Press, 1994.

[627]
A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond., 116:500-544, 1952.

[628]
W. Hoff and N. Ahuja. Extracting surfaces from stereo images: An integrated approach. In Proceedings of the 1st International Conference on Computer Vision, pages 284-294, June 1987.

[629]
D. D. Hoffman and B. E. Flinchbaugh. The interpretation of biological motion. Biological Cybernetics, 42:195-204, 1982.

[630]
D. D. Hoffman and W. A. Richards. Parts of recognition. A.I. Memo No. 732, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1983.

[631]
D. D. Hoffman and W. A. Richards. Representing smooth plane curves for recognition: implications for figure-ground reversal. In Proceedings IJCAI, pages 5-8, 1983.

[632]
D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18:65-96, 1984.

[633]
W. C. Hoffman. The neuron as a Lie group germ and a Lie product. Q. Journal Applied Math., XXV:433-440, 1968.

[634]
T. Hofmann and J. Buhmann. Multi% dimensional scaling and data clustering. In G. Tesauro J. D. Cowan and J. Alspector, editors, Neural Information Processing Systems, volume 7, pages 459-466. Morgan Kaufmann, 1994.

[635]
D. R. Hofstadter. Metamagical themas. Viking, Harmondsworth, England, 1985.

[636]
D. R. Hofstadter. Variations on a theme as the crux of creativity, chapter 12, pages 232-259. Viking, Harmondsworth, England, 1985. in Metamagical Themas.

[637]
J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction: processes of inference, learning, and discovery. MIT Press, Cambridge, MA, 1986.

[638]
J. H. Holland. Adaptation in natural and artificial systems. U. of Michigan Press, Ann Arbor, MI, 1975.

[639]
J. H. Holland. Escaping brittleness: the possibilities of general purpose machine learning algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine learning: an artificial intelligence approach, volume 2. Kaufmann, Los Altos, CA, 1986.

[640]
A. Hollingworth and J. M. Henderson. Does consistent scene context facilitate object perception? Journal of Experimental Psychology: General, -:--, 1998. in press.

[641]
R. Horaud and M. Brady. On the geometric interpretation of image contours. In Proceedings of the 1st International Conference on Computer Vision, pages 374-382, London, 1987. IEEE, Washington, DC.

[642]
B. K. P. Horn and M. Brooks. Seeing shape from shading. MIT Press, Cambridge, Mass., 1989.

[643]
B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17:185-203, 1981.

[644]
D. Horn and M. Usher. Oscillatory model of short term memory. In J. Moody, R. Lippman, and S. J. Hanson, editors, Neural Information Processing Systems, volume 4. Morgan Kaufmann, San Mateo, CA, 1992.

[645]
B. K. P. Horn. Determining lightness from an image. Computer Vision, Graphics, and Image Processing, 3:277-299, 1974.

[646]
B. K. P. Horn. Obtaining shape from shading information. In P. H. Winston, editor, The Psychology of Computer Vision, pages 115-155. McGraw-Hill, New York, NY, 1975.

[647]
B. K. P. Horn. Understanding image intensities. Artificial Intelligence, 8:201-231, 1977.

[648]
B. K. P. Horn. Exact reproduction of colored images. Computer Vision, Graphics, and Image Processing, 26:135-167, 1984.

[649]
B. K. P. Horn. Robot vision. MIT Press, Cambridge, Mass., 1986.

[650]
A. J. Howell and H. Buxton. Receptive field functions for face recognition. In Proc. 2nd Int. Workshop on Parallel Modelling of Neural Operators for Pattern Recognition (PAMONOP), pages 83-92, Faro, Portugal, 1995.

[651]
D. H. Hubel and T. N. Wiesel. Ferrier Lecture: Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B, 1977:1-59.

[652]
D. H. Hubel and T. N. Wiesel. Receptive fields of single neurons in the cat's striate cortex. J. Physiol., 148:574-591, 1959.

[653]
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol., 160:106-154, 1962.

[654]
D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. London, 195:215-243, 1968.

[655]
P. J. Huber. Projection pursuit (with discussion). The Annals of Statistics, 13:435-475, 1985.

[656]
J. F. Hughes. Scheduled Fourier volume morphing. Computer Graphics, 26:43-46, 1992.

[657]
D. Hume. An enquiry concerning human understanding. The Internet, 1748. available electronically at URL http://coombs.anu.edu.au/Depts/RSSS/Philosophy/Texts/EnquiryTOC.html.

[658]
J. E. Hummel and I. Biederman. Dynamic binding: a basis for the representation of shape by neural networks. In Proc. 12th Annual Conference of the Cognitive Science Society, pages 614-621, Hillsdale, NJ, 1990. Erlbaum.

[659]
J. E. Hummel and I. Biederman. Dynamic binding in a neural network for shape recognition. Psychological Review, 99:480-517, 1992.

[660]
J. E. Hummel and K. J. Holyoak. Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104:--, 1997.

[661]
R. A. Hummel and S. W. Zucker. On the foundations of relaxation labeling processes. In M. A. Fischler and O. Firschein, editors, Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pages 585-605. Kaufmann, Los Altos, CA., 1987.

[662]
J. E. Hummel. Where view-based theories of human object recognition break down: the role of structure in human shape perception. In E. Dietrich and A. Markman, editors, Cognitive Dynamics: conceptual change in humans and machines, pages --. MIT Press, 1998. in press.

[663]
G. K. Humphrey and S. C. Khan. Recognizing novel views of three-dimensional objects. Can. J. Psychol., 46:170-190, 1992.

[664]
G. W. Humphreys and P. Quinlan. Normal and pathological processes in visual object constancy. In G. W. Humphreys and M. J. Riddoch, editors, Visual object processing: a cognitive neuropsychological approach, pages 43-106. Erlbaum, Hillsdale, NJ, 1987.

[665]
G. W. Humphreys and M. J. Riddoch, editors. Visual object processing: a cognitive neuropsychological approach. Erlbaum, Hillsdale, NJ, 1987.

[666]
D. C. D. Hung. Enhancement and feature purification of fingerprint images. Pattern Recognition, 26:1661-1671, 1993.

[667]
A. C. Hurlbert, H.-C. Lee, and H. H. Bülthoff. Cues to the color of the illuminant. Invest. Ophthalm. Vis. Science Suppl., 30:221, 1989.

[668]
A. Hurlbert and T. Poggio. Do computers need attention? Nature, 321(12), 1986.

[669]
A. Hurlbert and T. Poggio. Learning a color algorithm from examples. A.I. Memo No. 909, CBIP Paper 25, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Ma., 1987.

[670]
A. Hurlbert and T. Poggio. Synthesizing a color algorithm from examples. Science, 239:482-485, 1988.

[671]
A. C. Hurlbert and T. Poggio. Learning a color algorithm from examples. In Neural Information Processing Systems: Proceedings of the Neural Information Processing Conference, pages 622-631, New York, NY, 1988. American Institute of Physics.

[672]
A. C. Hurlbert and T. Poggio. Making machines (and AI) see. Daedalus, 117:213-239, 1988.

[673]
A. C. Hurlbert. The computation of color. PhD thesis, MIT, 1989.

[674]
J. Hutchinson, C. Koch, J. Luo, and C. Mead. Computing motion using analog and binary resistive networks. IEEE Computer Magazine, 21:52-64, 1988.

[675]
D. P. Huttenlocher and S. Ullman. Object recognition using alignment. In Proceedings of the 1st International Conference on Computer Vision, pages 102-111, London, England, June 1987. IEEE, Washington, DC.

[676]
N. Ide and J. Veronis. Introduction to the special issue on word sense disambiguation: the state of the art. Computational Linguistics, 24:1-40, 1998.

[677]
K. Ikeuchi and B. K. P. Horn. Numerical shape from shading and occluding boundaries. Artificial Intelligence, 15:141-184, 1981.

[678]
K. Ikeuchi and T. Kanade. Applying sensor models to automatic generation of object recognition programs. In Proceedings of the 2nd International Conference on Computer Vision, pages 228-237, Tarpon Springs, FL, 1988.

[679]
N. Intrator, J. I. Gold, H. H. Bülthoff, and S. Edelman. Three-dimensional object recognition using an unsupervised neural network: understanding the distinguishing features. In J. Moody, S. J. Hanson, and R. L. Lippman, editors, Neural Information Processing Systems, volume 4, pages 460-467. Morgan Kaufmann, San Mateo, CA, 1992.

[680]
N. Intrator, D. Reisfeld, and Y. Yeshurun. Exploratory projection pursuit feature extraction for face recognition. 1992. in preparation.

[681]
N. Intrator, S. Edelman, and H. H. Bülthoff. An integrated approach to the study of object features in visual recognition. Network, 6:603-618, 1995.

[682]
N. Intrator and L. N. Cooper. Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks, 5:3-17, 1992.

[683]
N. Intrator and S. Edelman. How to make a low-dimensional representation suitable for diverse tasks. Connection Science, 8:205-224, 1996.

[684]
N. Intrator and S. Edelman. Competitive learning in biological and artificial neural computation. Trends in Cognitive Science, 1:268-272, 1997.

[685]
N. Intrator and S. Edelman. Learning low dimensional representations of visual objects with extensive use of prior knowledge. Network, 8:259-281, 1997.

[686]
N. Intrator and J. Gold. Three-dimensional object recognition in gray-level images: the usefulness of distinguishing features. Neural Computation, 5:61-74, 1993.

[687]
N. Intrator and G. Tajchman. Supervised and unsupervised feature extraction from a cochlear model for speech recognition. In B. H. Juang, S. Y. Kung, and C. A. Kamm, editors, Neural Networks for Signal Processing -- Proceedings of the 1991 IEEE Workshop, pages 460-469. IEEE Press, New York, NY, 1991.

[688]
N. Intrator. A neural network for feature extraction. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 719-726. Morgan Kaufmann, San Mateo, CA, 1990.

[689]
N. Intrator. Unsupervised adaptive classification of gray-scale images of 3D objects, 1990. Brown University TR, in preparation.

[690]
N. Intrator. Localized exploratory projection pursuit. In Ed Wegman, editor, Computer Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pages 237-240. Amer. Statist. Assoc., Washington, DC., 1991.

[691]
N. Intrator. Feature extraction using an unsupervised neural network. Neural Computation, 4:98-107, 1992.

[692]
N. Intrator. Combining Exploratory Projection Pursuit and Projection Pursuit Regression. Neural Computation, 5:443-455, 1993.

[693]
M. Ito, I. Fujita, H. Tamura, and K. Tanaka. Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey. Cerebral Cortex, 4:499-508, 1994.

[694]
M. Ito, H. Tamura, I. Fujita, and K. Tanaka. Size and position invariance of neuronal responses in monkey inferotemporal cortex. J. Neurophysiol., 73:218-226, 1995.

[695]
R. B. Ivry and W. Prinzmetal. Effect of feature similarity on illusory conjunctions. Perception and Psychophysics, 49:105-116, 1991.

[696]
R. Jackendoff. On beyond zebra: the relation of linguistic and visual information. Cognition, 26:89-114, 1987.

[697]
R. Jackendoff. Consciousness and the computational mind. MIT Press, Cambridge, MA, 1989.

[698]
D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Condensing image databases when retrieval is based on non-metric distances. In Proc. ICCV, pages 596-601. IEEE, 1998.

[699]
D. W. Jacobs. The use of grouping in visual object recognition. TR 1023, MIT, January 1988.

[700]
D. W. Jacobs. The space requirements of indexing under perspective projections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:330-333, 1996.

[701]
A. Jampolsky. Ocular divergence mechanisms. Trans. Amer. Ophthalm. Soc., 68:730-822, 1970.

[702]
J. Jastrow. The time relations of mental phenomena. Hodges, New York, 1890.

[703]
J. Jaynes. The origin of consciousness in the breakdown of the bicameral mind. Houghton Mifflin, Boston, MA, 1976.

[704]
W. M. Jenkins, M. M. Merzenich, and M. T. Ochs. Behaviorally controlled differential use of restricted hand surfaces induces changes in the cortical representation of the hand in area 3b of adult owl monkeys. Soc. Neurosci. Abstr., 10:665, 1984.

[705]
J. Joerges, A. Küttner, C. G. Galizia, and R. Menzel. Representations of odors and odor mixtures visualized in the honeybee brain. Nature, 387:285-288, 1997.

[706]
G. Johansson. Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14:201-211, 1973.

[707]
W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26:189-206, 1984.

[708]
P. Jolicoeur, M. Gluck, and S. M. Kosslyn. Pictures and names: making the connection. Cognitive Psychology, 16:243-275, 1984.

[709]
P. Jolicoeur, S. Ullman, and M. Mackay. Curve tracing: a possible basic operation in the perception of spatial relations. Memory and Cognition, 14:129-140, 1986.

[710]
P. Jolicoeur, S. Ullman, and M. Mackay. Visual curve tracing properties. Journal of Experimental Psychology: Human Perception and Performance, 17:997-1022, 1991.

[711]
P. Jolicoeur and G. K. Humphrey. Perception of rotated two-dimensional and three-dimensional objects and visual shapes. In V. Walsh and J. Kulikowski, editors, Perceptual constancies, chapter 10. Cambridge University Press, Cambridge, UK, 1998. in press.

[712]
P. Jolicoeur and S. M. Kosslyn. Coordinate systems in the long-term memory representation of three-dimensional shapes. Cognitive Psychology, 15:301-345, 1983.

[713]
P. Jolicoeur and M. J. Landau. Effects of orientation on the identification of simple visual patterns. Canadian Journal of Psychology, 38:80-93, 1984.

[714]
P. Jolicoeur and B. Milliken. Identification of disoriented objects: effects of context of prior presentation. J. Exp. Psychol.: LMC, 15:200-210, 1989.

[715]
P. Jolicoeur. The time to name disoriented objects. Memory and Cognition, 13:289-303, 1985.

[716]
P. Jolicoeur. Identification of disoriented objects: a dual-systems theory. Mind and Language, 5:387-410, 1990.

[717]
I. T. Joliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

[718]
D. G. Jones and J. Malik. A computational framework for determining stereo correspondence from a set of linear spatial filters. In G. Sandini, editor, Proc. ECCV-92, pages 395-410, Berlin, 1992. Springer.

[719]
M. I. Jordan and D. E. Rumelhart. Supervised learning with a distal teacher. Cognitive Science, 16:307-354, 1992.

[720]
K. Jöreskog and H. Wold. Systems under indirect observation: causality, structure, prediction. North-Holland, Amsterdam, 1982.

[721]
D. B. Judd, D. L. MacAdam, and G. Wyszecki. Spectral distribution of typical daylight as a function of correlated color temperature. Journal of the Optical Society of America, 54:1031-1040, 1964.

[722]
B. Julesz and J. R. Bergen. Textons, the fundamental elements in preattentive vision and perception of textures. Bell System Tech. Journal, 62:1619-1645, 1983.

[723]
B. Julesz. Foundations of Cyclopean perception. University of Chicago Press, Chicago, IL, 1971.

[724]
B. Julesz. Experiments in the visual perception of texture. Scientific American, 232:34-43, 1975.

[725]
B. Julesz. Spatial frequency channels in one- two- and three-dimensional vision: variations on a theme by Bekesy. In C. Harris, editor, Visual Coding and Adaptability. Erlbaum, Hillsdale, NJ, 1980.

[726]
B. Julesz. Textons: the elements of texture perception, and their interactions. Nature, 290:91-97, 1981.

[727]
B. Julesz. A theory of preattentive texture discrimination based on first-order statistics of textons. Biological Cybernetics, 41:131-138, 1981.

[728]
B. Julesz. A brief outline of the texton theory of human vision. Trends in Neurosciences, 7:41-45, 1984.

[729]
N. Jungman, A. Levi, A. Aperman, and S. Edelman. Automatic classification of police mugshot album using principal component analysis. In S. K. Rogers and D. W. Ruck, editors, Proc. SPIE-2243 Conference on Applications of Artificial Neural Networks, pages 591-594, Orlando, FL, 1994.

[730]
J. H. Kaas and P. E. Garraghty. Hierarchical, parallel, and serial arrangements of sensory cortical areas: connection patterns and functional aspects. Current Opinion in Neurobiology, 1:248-251, 1991.

[731]
J. H. Kaas. Why does the brain have so many visual areas? Journal of Cognitive Neuroscience, 1:121-135, 1989.

[732]
S. Kahan, T. Pavlidis, and H. S. Baird. On the recognition of printed characters of any font and size. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9:274-287, 1987.

[733]
P. Kalocsai and I. Biederman. Recognition model with narrow and broad extension fields. In M. G. Shafto and P. Langley, editors, Proceedings of the 19th Annual Conference of the Cognitive Science Society, pages 364-369, Hillsdale, NJ, 1997. Lawrence Erlbaum Associates.

[734]
Y. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual information. CS-TR 94-04, Weizmann Institute of Science, 1994. also in Proc. Intl. Conf. on Robotics and Automation, Minneapolis, April 1996.

[735]
T. Kanade and J. R. Kender. Mapping image properties into image constraints: skewed symmetry, affine-transformable patterns and the shape from texture paradigm. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and machine vision, pages 237-258, New York, 1983. Academic Press.

[736]
K. Kanatani. Group-theoretical methods in image understanding. Springer, Berlin, 1990.

[737]
E. R. Kandel and J. H. Schwartz. Principles of neural science. Elsevier, New York, 1985.

[738]
N. Kanwisher, M. M. Chun, J. McDermott, and P. J. Ledden. Functional imaging of human visual recognition. Cognitive Brain Research, 5:55-67, 1996.

[739]
N. Kanwisher, J. McDermott, and M. M. Chun. The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17:--, 1997.

[740]
A. Karni, D. Tanne, B. S. Rubinstein, J. J. Ashkenazi, and D. Sagi. No dreams -- no memory: the effect of rem sleep deprivation on learning a new perceptual skill. Soc. Neurosci. Abstr., 18, 1992.

[741]
A. Karni and D. Sagi. Human texture discrimination learning --- evidence for low-level neuronal plasticity in adults. Perception, 19:335, 1990.

[742]
A. Karni and D. Sagi. Where practice makes perfect in texture discrimination. Proceedings of the National Academy of Science, 88:4966-4970, 1991.

[743]
A. Karni. The acquisition of perceptual and motor skills: a memory system in the adult human cortex. Cognitive Brain Research, 5:39-48, 1996.

[744]
Y. Karov and S. Edelman. Learning similarity-based word sense disambiguation from sparse data. CS-TR 96-05, The Weizmann Institute of Science, March 1996. Computational Linguistics, 1997, in press; a short version appeared also in Proc. 4th Intl. Workshop on Large Corpora, Copenhagen, 1996.

[745]
Y. Karov and S. Edelman. Similarity-based word sense disambiguation. Computational Linguistics, 24:41-59, 1998.

[746]
M. Kass and A. Witkin. Analyzing oriented patterns. In W. Richards, editor, Natural computation, pages 252-265. MIT Press, Cambridge, MA, 1988.

[747]
L. C. Katz and E. M. Callaway. Development of local circuits in mammalian visual cortex. Ann. Rev. Neurosci., 15:31-56, 1992.

[748]
N. Kawabata and T. Mori. Disambiguating ambiguous figures by a model of selective attention. Biological Cybernetics, 67:417-426, 1992.

[749]
M. Kawato, H. Hayakawa, and T. Inui. A forward-inverse optics model of reciprocal connections between visual cortical areas. Network, 4:415-422, 1993.

[750]
R. Kazman. Simulating the child's acquisition of the lexicon and syntax - experiences with babel. Machine Learning, 16:87-120, 1994. special issue on computational models of human learning.

[751]
S. W. Keele and W. Trammer Neill. Mechanisms of attention. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume IX, pages 3-47. Academic Press, New York, NY, 1978.

[752]
F. C. Keil. Concepts, kinds and cognitive development. MIT Press, Cambridge, MA, 1989.

[753]
D. G. Kendall. Shape manifolds, Procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc., 16:81-121, 1984.

[754]
D. G. Kendall. A survey of the statistical theory of shape. Statistical Science, 4:87-120, 1989.

[755]
J. R. Kender. Shape from texture: An aggregation transform that maps a class of textures into surface orientation. In Proc. IJCAI, 1979.

[756]
D. Kersten, H. H. Bülthoff, B. L. Schwartz, and K. J. Kurtz. Interaction between transparency and structure from motion. Neural Computation, 4:573-589, 1992.

[757]
B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Toward a computational theory of shape. In O. Faugeras, editor, Proc. ECCV-90, pages 402-407, Berlin, 1990. Springer-Verlag.

[758]
M. Kirby and L. Sirovich. Application of the Karhunen-Loève procedure for characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):103-108, 1990.

[759]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671-680, 1983.

[760]
K. Kirschfeld. Neuronal oscillations and synchronized activity in the central nervous system: functional aspects. Psycoloquy, 6(36), December 1995. available electronically as ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/1995.volume.6/psyc.95.6.36.bra% in-rhythms.11.kirschfeld.

[761]
S. A. Klein and D. M. Levi. Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. Journal of the Optical Society of America, A2:1170-1190, 1985.

[762]
V. C. Klema and A. J. Laub. The singular value decomposition: its computation and some applications. IEEE Trans. Auto. Control, 25:164-176, 1980.

[763]
D. C. Knill and D. Kersten. Learning a near-optimal estimator for surface shape from shading. Computer Vision, Graphics, and Image Processing, 50:75-100, 1990.

[764]
D. C. Knill and D. Kersten. Ideal perceptual observers for computation, psychophysics and neural networks. In R. Watt, editor, Vision and visual dysfunction, volume 14, chapter 7, pages 83-97. Macmillan, London, 1991.

[765]
E. Kobatake, K. Tanaka, and Y. Tamori. Long-term learning changes the stimulus selectivity of cells in the inferotemporal cortex of adult monkeys. Neuroscience Research, S17:237, 1992.

[766]
E. Kobatake, G. Wang, and K. Tanaka. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol., 80:--, 1998. in press.

[767]
E. Kobatake and K. Tanaka. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol., 71:856-867, 1994.

[768]
C. Koch and T. Poggio. Biophysics of computational systems: Neurons, synapses, and membranes. In G. M. Edelman, W. E. Gall, and W. M. Cowan, editors, Synaptic Function, pages 637-697. Wiley, New York, NY, 1987.

[769]
C. Koch and I. Segev. Methods in neuronal modeling. MIT Press, Cambridge, MA, 1989.

[770]
C. Koch and S. Ullman. Selecting one among the many: a simple network implementing shifts in selective visual attention. Human Neurobiology, 4:219-227, 1985.

[771]
J. J. Koenderink, A. J. van Doorn, and A. M. L. Kappers. Depth and viewing conditions: pictures versus real scenes. Perception, 22 (suppl.):98, August 1993. Proc. ECVP'93.

[772]
J. J. Koenderink, A. J. van Doorn, and A. M. L. Kappers. Pictorial surface attitude and local depth comparisons. Perception and Psychophysics, 58:163-173, 1996.

[773]
J. J. Koenderink and A. J. van Doorn. Local structure of movement parallax of the plane. Journal of the Optical Society of America, 66:717-723, 1976.

[774]
J. J. Koenderink and A. J. van Doorn. The internal representation of solid shape with respect to vision. Biological Cybernetics, 32:211-217, 1979.

[775]
J. J. Koenderink and A. J. van Doorn. The shape of smooth objects and the way contours end. Perception, 11:129-137, 1981.

[776]
J. J. Koenderink and A. J. van Doorn. Depth and shape from differential perspective in the presence of bending deformations. Journal of the Optical Society of America, 3:242-249, 1986.

[777]
J. J. Koenderink and A. J. van Doorn. Optic flow. Vision Research, 26:161-180, 1986.

[778]
J. J. Koenderink and A. J. van Doorn. Receptive field families. Biological Cybernetics, 63:291-297, 1990.

[779]
J. J. Koenderink and A. van Doorn. Affine structure from motion. Journal of the Optical Society of America, 8:377-385, 1991.

[780]
J. J. Koenderink and A. J. van Doorn. Affine structure from motion. Journal of the Optical Society of America, 8(2):377-385, 1991.

[781]
J. J. Koenderink. What does the occluding contour tell us about solid shape? Perception, 13:321-330, 1984.

[782]
J. J. Koenderink. Solid Shape. MIT Press, Cambridge, MA, 1990.

[783]
W. Köhler. Gestalt psychology. Liveright, New York, 1947.

[784]
T. Kohonen. Associative memory: a system theoretic approach. Springer-Verlag, Berlin, 1978.

[785]
T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59-69, 1982.

[786]
R. Kolinsky, J. Morais, A. Content, and L. Cary. Finding parts withing figures: a developmental study. Perception, 16:399-407, 1987.

[787]
Y. Kondratoff and G. Tecuci. Learning based on conceptual distance. pami, 10:897-908, 1988.

[788]
W. L. G. Koontz and K. Fukunaga. A nonlinear feature extraction algorithm using distance information. IEEE Trans. Comput., 21:56-63, 1972.

[789]
L. Kopp. A neural network for spatial relations: Connecting visual scenes to linguistic descriptions. Cognitive studies 32, Lund University, 1994.

[790]
A. Koriat and M. Goldsmith. Memory metaphors and the laboratory/real-life controversy: correspondence versus storehouse views of memory. Behavior and Brain Sciences, 1995. in press.

[791]
A. Koriat and J. Norman. What is rotated in mental rotation? Journal of Experimental Psychology: Learning, Memory and Cognition, 10:421-434, 1984.

[792]
A. Koriat and J. Norman. Mental rotation and visual familiarity. Perception and Psychophysics, 37:429-439, 1985.

[793]
H. Kornblith. Inductive inference and its natural ground. MIT Press, Cambridge, MA, 1993.

[794]
S. M. Kosslyn, S. Pinker, G. E. Smith, and S. P. Shwartz. On the demystification of mental imagery. Behavioral and Brain Sciences, 2:535-581, 1979.

[795]
S. M. Kosslyn. Image and mind. Harvard Univ. Press, Cambridge, MA, 1980.

[796]
Z. Kourtzi and M. Shiffrar. One-shot view invariance in a moving world. Psychological Science, 8:461-466, 1997.

[797]
I. Kovacs and B. Julesz. Perceptual sensitivity maps within globally defined visual shapes. Nature, 370:644-646, 1994.

[798]
A. F. Kramer, D. L. Strayer, and J. Buckley. Development and transfer of automatic processing. Journal of Experimental Psychology: Human Perception and Performance, 16:505-522, 1990.

[799]
B. J. A. Kröse and P. P. van der Smagt. An introduction to neural networks. U. of Amsterdam, Amsterdam, 1993.

[800]
C. L. Krumhansl. Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychological Review, 85:445-463, 1978.

[801]
John K. Kruschke. ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99(1):22-44, 1992.

[802]
S. L. Krushkal'. Quasiconformal mappings and Riemann surfaces. Wiley, New York, 1979.

[803]
J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage Piblications, Beverly Hills, CA, 1978.

[804]
J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.

[805]
J. B. Kruskal. Non-metric multidimensional scaling: a numerical method. Psychometrika, 29:115-129, 1964.

[806]
J. B. Kruskal. The relationship between multidimensional scaling and clustering. In J. Van Ryzin, editor, Classification and clustering, pages 17-44. Academic Press, New York, 1977.

[807]
M. Kubovy and P. Podgorny. Does pattern matching require the normalization of size and orientation? Perception & Psychophysics, 30:24-28, 1981.

[808]
M. Kubovy. Mental imagery majestically transforming cognitive psychology [review of Mental images and their transformations]. Contemporary Psychology, 28:661-663, 1983.

[809]
S. W. Kuffler and J. G. Nicholls. From neuron to brain. Sinauer, Sunderland, MA, 1976.

[810]
S. W. Kuffler. Discharge patterns and functional organization of mammalian retina. J. Neurophysiology, 16:37-68, 1953.

[811]
P. K. Kuhl. Human adults and human infants show a &puml;erceptual magnet effect¨ for the prototypes of speech categories, monkeys do not. Perception and Psychophysics, 50:93-107, 1991.

[812]
P. K. Kuhl. Learning and representation in speech and language. Current opinion in neurobiology, 4:812-822, 1994.

[813]
J. Kulikowski, S. Marcelja, and P. O. Bishop. Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. Biological Cybernetics, 43:187-198, 1982.

[814]
M. Kuperstein. Neural model of adaptive hand-eye coordination for single postures. Science, 239:1308-1311, 1988.

[815]
M. A. Kurbat, E. E. Smith, and D. L. Medin. Categorization, typicality, and shape similarity. In A. Ram and K. Eiselt, editors, Proc. Sixteenth Annual Conference of the Cognitive Science Society, pages 520-525, 1994.

[816]
M. A. Kurbat. Is RBC/JIM a general-purpose theory of human entry-level object recognition? Perception, 23:1339-1368, 1994.

[817]
D. LaBerge. Perceptual learning and attention. In W. K. Estes, editor, Handbook of learning and cognitive processes, volume 4, pages 237-273. Erlbaum, Hillsdale, NJ, 1976.

[818]
J. Lachter and M. Hayhoe. Capacity limitations in memory for visual locations. Perception, 24:1427-1442, 1995.

[819]
Y. Lamdan and H. Wolfson. Geometric hashing: a general and efficient recognition scheme. In Proceedings of the 2nd International Conference on Computer Vision, pages 238-251, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[820]
V. A. F. Lamme, K. Zipser, and H. Spekreijse. Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proceedings of the National Academy of Science, 95:3263-3268, 1998.

[821]
D. Lancet. The strong scent of success. Nature, 351:275-276, 1991. News and Views.

[822]
E. H. Land and J. J. McCann. Lightness and retinex theory. Journal of the Optical Society of America, 61:1-11, 1971.

[823]
E. H. Land. An alternative technique for the computation of the designator in the retinex theory of color vision. Proceedings of the National Academy of Science, 83:3078-3080, 1986.

[824]
B. Landau, L. B. Smith, and S. Jones. The importance of shape in early lexical learning. Cognitive Development, 3:299-321, 1988.

[825]
T. K. Landauer and S. T. Dumais. A solution to Plato's problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104:211-240, 1997.

[826]
M. Lando and S. Edelman. Generalization from a single view in face recognition. CS-TR 95-02, Weizmann Institute of Science, 1995.

[827]
M. Lando and S. Edelman. Receptive field spaces and class-based generalization from a single view in face recognition. Network, 6:551-576, 1995.

[828]
M. Lando. A computational model of upright and inverted human face recognition. Master's thesis, Feinberg Graduate School of the Weizmann Institute of Science, Rehovot, Israel, November 1994.

[829]
M. S. Landy. Parallel model of the kinetic depth effect using local computations. Journal of the Optical Society of America, 4:864-877, 1987.

[830]
R. W. Langacker. Concept, Image, and Symbol: The Cognitive Basis of Grammar. Mouton de Gruyter, Berlin, 1990.

[831]
P. Langley and W. Iba. Average-case analysis of a nearest-neighbor algorithm. In Proc. 13th IJCAI, pages 889-894, Chambery, France, 1993. Morgan Kaufmann.

[832]
J. S. Lappin, J. Farley Norman, and L. Mowafy. The detectability of geometric structure in rapidly changing optical patterns. Perception, 20:513-528, 1991.

[833]
A. Larsen. Pattern matching: effects of size ratio, angular difference in orientation and familiarity. Perception and Psychophysics, 38:63-68, 1985.

[834]
R. Lawson, G. Humphreys, and D. G. Watson. Object recognition under sequential viewing conditions: evidence for viewpoint-specific recognition procedures. Perception, 23:595-614, 1994.

[835]
R. Lawson and G. W. Humphreys. View specificity in object processing: evidence from picture matching. Journal of Experimental Psychology: Human Perception and Performance, 22:395-416, 1996.

[836]
H. Le and D. G. Kendall. The Riemannian structure of Euclidean shape spaces: a novel environment for statistics. The Annals of Statistics, 21:1225-1271, 1993.

[837]
H. Le. On geodesics in Euclidean shape spaces. J. Lond. Math. Soc., 44:360-372, 1991.

[838]
Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series. In M. A. Arbib, editor, The handbook of brain theory and neural networks, pages 255-258. MIT Press, 1995.

[839]
S. Lee and J. C. Pan. Offline tracing and representation of signatures. IEEE Trans. SMC, 22:755-771, 1992.

[840]
H.-C. Lee. Method for computing the scene-illuminant chromaticity from specular highlights. Journal of the Optical Society of America, 3:1694-1699, 1986.

[841]
T. K. Leen and N. Kambhatla. Fast non-linear dimension reduction. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems, volume 6, pages 152-159. Morgan Kauffman, San Francisco, CA, 1994.

[842]
E. Leeuwenberg and F. Boselie. Against the likelihood principle in visual form perception. Psychological Review, 95:485-491, 1989.

[843]
S. Lem. Star Diaries. Harcourt Brace Jovanovich, New York, 1985.

[844]
D. Leopold and N. Logothetis. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature, 379, 1996.

[845]
J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. What the frog's eye tells the frog's brain. Proc. IRE, 47:1940-1959, 1959.

[846]
D. M. Levi and S. Klein. Hyperacuity and amblyopia. Nature, 298:268-270, 1982.

[847]
D. M. Levi and S. Klein. Spatial localization in normal and amblyopic vision. Vision Research, 23:1005-1017, 1983.

[848]
D. M. Levi and S. Klein. Vernier acuity, crowding and amblyopia. Vision Research, 25:979-991, 1985.

[849]
S. H. Levine and J. G. Kreifeldt. Uniquely representing point patterns with minimal information. smc, 24:895-900, 1994.

[850]
L. Li, E. K. Miller, and R. Desimone. The representation of stimulus familiarity in anterior inferior temporal cortex. J. of Neurophysiology, 69:1918-1929, 1993.

[851]
Zhaoping Li. Pre-at% tentive segmentation in the primary visual cortex. A.I. Memo No. 1640, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1998.

[852]
L. L. Light, F. Kayra-Stuart, and S. Hollander. Recognition memory for typical and unusual faces. Journal of Experimental Psychology: Human Learning and Memory, 5:212-228, 1979.

[853]
W. Lim, editor. Proc. AAAI-90 Workshop on Qualitative Vision. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[854]
S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21:498-516, 1973.

[855]
J.-H. Lin and J. S. Vitter. Complexity results on learning by neural nets. Machine Learning, 6:211-230, 1991.

[856]
Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, COM-28:84-95, 1980.

[857]
P. H. Lindsay and D. A. Norman. Human information processing: an introduction to psychology. Academic Press, New York, 1977.

[858]
N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. FOCS, 35:577-591, 1994.

[859]
R. Linsker. Perceptual neural organization: some approaches based on network models and information theory. Ann. Rev. Neurosci., 13:257-281, 1990.

[860]
R. Linsker. Self-organization in a perceptual network. IEEE Computer, 21:105-117, March 1988.

[861]
J. J. Little, T. Poggio, and E. B. Gamble Jr. Seeing in parallel: The vision machine. International Journal of Supercomputing Applications, 2:13-28, 1988.

[862]
N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.

[863]
Z. Liu, D. C. Knill, and D. Kersten. Object classification for human and ideal observers. Vision Research, 35:549-568, 1995.

[864]
J. Locke. An essay concerning human understanding. Modern Library, New York, 1994 (original edition 1690).

[865]
G. R. Loftus and N. H. Mackworth. Cognitive determinants of fixation location during picture viewing. jephpp, 4:565-572, 1978.

[866]
G. Logan. Towards an instance theory of automatization. Psychological Review, 95:492-527, 1988.

[867]
N. K. Logothetis, J. Pauls, T. Poggio, and H. H. Bülthoff. View dependent object recognition by monkeys. Current Biology, 4:404-41, 1994.

[868]
N. K. Logothetis, J. Pauls, and T. Poggio. Shape recognition in the inferior temporal cortex of monkeys. Current Biology, 5:552-563, 1995.

[869]
N. Logothetis and J. Pauls. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cerebral Cortex, 3:270-288, 1995.

[870]
N. K. Logothetis and D. L. Scheinberg. Visual object recognition. Annual Review of Neuroscience, 19:577-621, 1996.

[871]
C. M. Lombardi and J. D. Delius. Size invariance in visual pattern recognition by pigeons. In M. L. Commons, R. J. Herrnstein, S. M. Kosslyn, and D. B. Mumford, editors, Quantitative analyses of behavior, volume VIII. Erlbaum, Hillsdale, NJ, 1990.

[872]
H. C. Longuet-Higgins and K. Prazdny. The interpretation of a moving retinal image. Proceedings of the Royal Society of London B, 208:385-397, 1980.

[873]
H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133-135, 1981.

[874]
H. C. Longuet-Higgins. Recognizing three dimensions. Nature, 343:214-215, 1990.

[875]
David G. Lowe and Thomas O. Binford. The Recovery of Three-Dimensional Structure from Image Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(3):320-326, 1985.

[876]
D. G. Lowe. Perceptual organization and visual recognition. Kluwer Academic Publishers, Boston, MA, 1986.

[877]
D. G. Lowe. Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence, 31:355-395, 1987.

[878]
D. G. Lowe. The viewpoint consistency constraint. International Journal of Computer Vision, 1:57-72, 1987.

[879]
D. G. Lowe. Stabilized solution for 3D model parameters. In O. Faugeras, editor, Proc. European Conference on Computer Vision, pages 408-412, New York, 1990. Springer.

[880]
R. D. Luce. Response times: their role in inferring elementary mental organization. Oxford University Press, Oxford, 1986.

[881]
J. S. Lund, T. Yoshioka, and J. B. Levitt. Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cerebral Cortex, 3:148-162, 1993.

[882]
M. C. MacDonald, N. J. Pearlmutter, and M. S. Seidenberg. Lexical nature of syntactic ambiguity resolution. Psych. Rev., 101:676-703, 1994.

[883]
N. J. Mackintosh. Categorization by people and pigeons: The twenty-second Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 48B:193-210, 1995.

[884]
A. K. Mackworth. How to see a simple world: An exegesis of some computer programs for scene analysis. In E. W. Elcock and D. Michie, editors, Machine Intelligence, volume 8, pages 510-537. Wiley, New York, 1972.

[885]
J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symposium, 1:281-297, 1967.

[886]
W. T. Maddox and F. G. Ashby. Comparing decision bound and exemplar models of categorization. Perception and Psychophysics, 53:49-70, 1993.

[887]
L. Maffei. Spatial frequency channels: neural mechanisms. In R. Held, H. W. Leibowitz, and H.-L. Teuber, editors, Handbook of sensory physiology: Perception, chapter 2, pages 39-68. Springer-Verlag, Berlin, 1978.

[888]
R. Malach, Y. Amir, E. Bartfeld, and A. Grinvald. Biocytin injections, guided by optical imaging, reveal relationships between functional architecture and intrinsic connections in monkey visual cortex. Soc. Neurosci. Abstr., 18, 1992.

[889]
R. Malach, J. B. Reppas, R. R. Benson, K. K. Kwong, J. Jiang, W. A. Kennedy, P. J. Ledden, T. J. Brady, B. R. Rosen, and R. B. H. Tootell. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Science, 92:8135-8139, August 1995.

[890]
H. A. Mallot, W. von Seelen, and F. Giannakopoulos. Neural mapping and space-variant image processing. Neural Networks, 3:245-263, 1990.

[891]
H. A. Mallot, H. H. Bülthoff, J. J. Little, and S. Bohrer. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics, 64:177-185, 1991.

[892]
H. A. Mallot, H. H. Bülthoff, and J. J. Little. Neural architecture for optical flow computation. A.I. Memo No. 1067, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, March 1989.

[893]
L. T. Maloney and M. S. Landy. A statistical framework for robust fusion of depth information. In Proc. SPIE: Visual Communications and Image Processing, pages 1154-1163, 1989. Part 2.

[894]
L. T. Maloney and B. Wandell. A computational model of color constancy. Journal of the Optical Society of America, 1:29-33, 1986.

[895]
L. T. Maloney. Computational approaches to color vision. PhD thesis, Stanford Univ., Stanford, CA, 1984.

[896]
R. S. Malpass and K. D. Hughes. Formation of facial prototypes. In H. D. Ellis, M. A. Jeeves, and F. Newcombe, editors, Aspects of face processing, pages 154-162. Martinus Nijhoff, Dordrecht, 1986.

[897]
F. Manolache and S. Edelman. Generation of natural-looking 3D shapes by simulated evolution. CS-TR 93-13, Weizmann Institute of Science, July 1993. URL http://eris.wisdom.weizmann.ac.il/pub/animal-evolution.ps.Z.

[898]
J. Margolis. The truth about relativism. Basil Blackwell, Oxford, UK, 1991.

[899]
T. Marill. Recognizing 3D objects without the use of models. A.I. Memo No. 1157, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[900]
A. Markman and D. Gentner. Structural alignment during similarity comparisons. Cognitive Psychology, 25:431-467, 1993.

[901]
E. Markman. Categorization and naming in children. MIT Press, Cambridge, MA, 1989.

[902]
L. E. Marks. The slippery context effect in psychophysics: intensive, extensive, and qualitative continua. Perception and Psychophysics, 51:187-198, 1992.

[903]
L. Markson and P. Bloom. Evidence against a dedicated system for word learning in children. Nature, 385:813-815, 1997.

[904]
D. Marr, T. Poggio, and E. Hildreth. Smallest channel in early human vision. Journal of the Optical Society of America, 70:868-870, 1980.

[905]
D. Marr and E. Hildreth. Theory of edge detection. Proc. R. Soc. Lond. B, 207:187-217, 1980.

[906]
D. Marr and H. K. Nishihara. Representation and recognition of the spatial organization of three dimensional structure. Proceedings of the Royal Society of London B, 200:269-294, 1978.

[907]
D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 194:283-287, 1976.

[908]
D. Marr and T. Poggio. From understanding computation to understanding neural circuitry. Neurosciences Res. Prog. Bull., 15:470-488, 1977.

[909]
D. Marr and T. Poggio. A computational theory of human stereo vision. Proceedings of the Royal Society of London B, 204:301-328, 1979.

[910]
D. Marr and S. Ullman. Directional selectivity and its use in early visual processing. Proceedings of the Royal Society of London B, 211:151-180, 1981.

[911]
D. Marr. A theory of cerebellar cortex. J. Physiol., 202:437-470, 1969.

[912]
D. Marr. A theory for cerebral neocortex. Proceedings of the Royal Society of London B, 176:161-234, 1970.

[913]
D. Marr. Simple memory: a theory for archicortex. Phil. Trans. Royal Soc. London, 262:23-81, 1971.

[914]
D. Marr. The computation of lightness by the primate retina. Vision Research, 14:1377-1388, 1974.

[915]
D. Marr. Early processing of visual information. Phil. Trans. R. Soc. Lond. B, 275:483-524, 1976.

[916]
D. Marr. Analysis of occluding contour. Proc. R. Soc. Lond. B, 197:441-475, 1977.

[917]
D. Marr. Artificial intelligence: a personal view. In J. Haugeland, editor, Mind Design, chapter 4, pages 129-142. MIT Press, Cambridge, MA, 1981.

[918]
D. Marr. Vision. W. H. Freeman, San Francisco, CA, 1982.

[919]
J. Marroquin, S. Mitter, and T. Poggio. Probabilistic solution of ill-posed problems in computational vision. Journal of the American Statistical Association, 82:76-89, 1987.

[920]
J. C. Marshall and P. W. Halligan. Blindsight and insight in visuo-spatial neglect. Nature, 336:766-767, 1988.

[921]
W. D. Marslen-Wilson, M. Ford, L. Older, and Z. Xiaolin. The combinatorial lexicon: priming derivational affixes. In G. W. Cottrell, editor, Proc. of the 18th annual conf. of the Cognitive Science Society, pages 223-227, Hillsdale, NJ, 1996. Erlbaum.

[922]
A. Martin, C. L. Wiggs, L. Ungerleider, and J. V. Haxby. Neural correlates of category-specific knowledge. Nature, 379:649-652, 1996.

[923]
J. D. Martin and D. O. Billman. Acquiring and combining overlapping concepts. Machine Learning, 16:121-155, 1994. special issue on computational models of human learning.

[924]
T. Martinetz, H. Ritter, and K. Schulten. Three-dimensional neural net for learning visuomotor coordination of a robot arm. 1:131-136, 1990.

[925]
J. H. R. Maunsell. Functional visual streams. Current Opinion in Neurobiology, 2:506-510, 1992.

[926]
J. E. W. Mayhew and J. P. Frisby. Psychophysical and computational studies towards a theory of human stereopsis. Artificial Intelligence, 17:349-386, 1981.

[927]
S. Mazur and S. Ulam. Sur les transformations isométriques vectoriels normés. C. R. Acad. Sci. Paris, 194:946-948, 1932.

[928]
C. McCollough. Color adaptation of edge detectors in the human visual system. Science, 149:1115-1116, 1965.

[929]
J. McCollum, J. Larson, T. Otto, F. Schottler, R. Granger, and G. Lynch. Short-latency single-unit processing in olfactory cortex. Journal of Cognitive Neuroscience, 3:293-299, 1991.

[930]
W. S. McCulloch. Brain and behavior. In W. C. Halstead, editor, Comparative Psychology Monograph, volume 20, pages 39-50. U. of Calif. Press, Berkeley, CA, 1950.

[931]
W. S. McCulloch. Embodiments of mind. MIT Press, Cambridge, MA, 1965.

[932]
D. McDermott. Artificial Intelligence meets natural stupidity. In J. Haugeland, editor, Mind Design, chapter 5. MIT Press, Cambridge, MA.

[933]
S. P. McKee and G. Westheimer. Improvement in vernier acuity with practice. Perception and Psychophysics, 24:258-262, 1978.

[934]
S. C. McKinley and R. M. Nosofsky. Selective attention and the formation of linear decision boundaries. Journal of Experimental Psychology: Human Perception and Performance, 22:294-317, 1996.

[935]
I. P. L. McLaren, H. J. Leevers, and N. J. Mackintosh. Recognition, categorization, and perceptual learning (or, how learning to classify things together helps one to tell them apart). In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 35, pages 889-909. MIT Press, 1994.

[936]
P. A. McMullen, J. Hamm, and P. Jolicoeur. Rotated object identification with and without orientation cues. Canadian J. of Experimental Psychology, 49:133-149, 1995.

[937]
B. L. McNaughton and R. G. M. Morris. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10:408-415, 1987.

[938]
D. L. Medin, R. L. Goldstone, and D. Gentner. Respects for similarity. Psychological Review, 100:254-278, 1993.

[939]
D. L. Medin, R. L. Goldstone, and A. B. Markman. Comparison and choice: Relations between similarity processes and decision processes. Psychonomic Bulletin & Review, 2:1-19, 1995.

[940]
D. L. Medin and M. M. Schaffer. Context theory of classification learning. Psychological Review, 85:207-238, 1978.

[941]
D. L. Medin and E. E. Smith. Concepts and concept formation. Annual Review of Psychology, 35:113-138, 1984.

[942]
G. G. Medioni and R. Nevatia. Segment-based stereo matching. Computer Vision, Graphics, and Image Processing, 31:2-18, 1985.

[943]
B. W. Mel and C. Koch. Sigma-Pi learning: on radial basis functions and cortical associative learning. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 474-481. Morgan Kaufmann, San Mateo, CA, 1990.

[944]
B. Mel. A connectionist model may shed light on neural mechanisms for visually guided reaching. J. of Cognitive Neuroscience, 3:273-292, 1991.

[945]
B. Mel. NMDA-based pattern discrimination in a modeled cortical neuron. Neural Computation, 4:502-517, 1992.

[946]
B. Mel. SEEMORE: A view-based approach to 3-D object recognition using multiple visual cues. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8. MIT Press, Cambridge, MA, 1996.

[947]
B. Mel. SEEMORE: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Technical report, University of South California, Los Angeles, CA, January 1996.

[948]
B. Mel. SEEMORE: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation, 9:777-804, 1997.

[949]
W. Mendenhall and T. Sincich. Statistics for the engineering and computer sciences. Macmillan, London, 1988.

[950]
M. M. Merzenich, G. Recanzone, W. M. Jenkins, T. T. Allard, and R. J. Nudo. Cortical representation plasticity. In P. Rakic and W. Singer, editors, Neurobiology of Neocortex, pages 41-68. Wiley, New York, NY, 1988.

[951]
M-M. Mesulam, editor. Principles of behavioral neurology. Davis, Philadelphia, PA, 1986.

[952]
C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx., 2:11-22, 1986.

[953]
R. E. Miles. A survey of geometric probability in the plane, with emphasis on stochastic image modeling. In A. Rosenfeld, editor, Image Modeling, pages 277-300. Academic Press, New York, 1981.

[954]
E. K. Miller, L. Li, and R. Desimone. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neuroscience, 13:1460-1478, 1993.

[955]
E. K. Miller and R. Desimone. Parallel neuronal mechanisms for short-term memory. Science, 263:520-522, 1994.

[956]
J. Miller and P. Eimas. Feature detectors and speech perception: a critical evaluation. In D. Albrecht, editor, Recognition of Pattern and Form (Lecture Notes in Biomathematics), volume 44, pages 111-145. Springer, Berlin, 1979.

[957]
K. D. Miller. Correlation-based mechanisms of neural development. In M. A. Gluck and D. E. Rumelhart, editors, Neuroscience and Connectionist Theory, pages 267-353. Erlbaum, Hillsdale NJ, 1990.

[958]
R. Millikan. Language, Thought, and Other Biological Categories. MIT Press, Cambridge, MA, 1984.

[959]
R. Millikan. White Queen Psychology and other essays for Alice. MIT Press, Cambridge, MA, 1995.

[960]
M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[961]
M. Minsky. A framework for representing knowledge. In P. H. Winston, editor, The psychology of computer vision. McGraw-Hill, New York, 1975.

[962]
M. Mishkin, L. G. Ungerleider, and K. A. Macko. Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 4:414-417, 1983.

[963]
G. J. Mitchison and S. P. McKee. Interpolation in stereoscopic matching. Nature, 315:402-404, 1985.

[964]
G. J. Mitchison and G. Westheimer. Viewing geometry and gradients of horizontal disparity. In C. Blakemore, editor, Vision: coding and efficiency, chapter 28, pages 302-309. Cambridge University Press, 1990.

[965]
G. Mitchison. Axonal trees and cortical architecture. Trends in Neurosciences, 15:122-126, 1992.

[966]
A. Mitiche. Computation of optical flow and rigid motion. In Proc. Workshop on Computer Vision: Representation and Control, pages 63-71, Annapolis, MD, 1984.

[967]
A. Mitiche. On kineopsis and computation of structure and motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:109-112, 1986.

[968]
H. Mitsumoto, S. Tamura, K. Okazaki, N. Kajimi, and Y. Fukui. 3D reconstruction using mirror images based on a plane symmetry recovering method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:941-946, 1992.

[969]
Y. Miyashita, A. Date, and H. Okuno. Configuration encoding of complex visual forms by single neurons of monkey temporal cortex. Neuropsychologia, 31:1119-1132, 1993.

[970]
R. Mohan, D. Weinshall, and R. R. Sarukkai. 3D object recognition by indexing structural invariants from multiple views. In Proceedings of the 4th International Conference on Computer Vision, pages 264-268, Berlin, Germany, 1993. IEEE, Washington, DC.

[971]
G. Mohn and J. Van Hof Van Duin. Development of spatial vision. In D. Regan, editor, Vision and visual dysfunction, volume 7, chapter 4. Macmillan, London, 1991.

[972]
J. Moody and C. Darken. Fast learning in networks of locally tuned processing units. Neural Computation, 1:281-289, 1989.

[973]
J. Moran and R. Desimone. Selective attention gates visual processing in the extrastriate cortex. Science, 229:782-784, 1985.

[974]
P. Morasso. Spatial control of arm movements. Exp. Brain Res., 42:223-227, 1981.

[975]
J. Morton. Interaction of information in word recognition. Psychological Review, 76:165-178, 1969.

[976]
Y. Moses, S. Ullman, and S. Edelman. Generalization across illumination and orientation changes for inverted and upright faces. CS-TR 14, Weizmann Institute of Science, 1993. Perception, vol.25, in press (1996).

[977]
Y. Moses, Y. Adini, , and S. Ullman. Face recognition: the problem of compensating for illumination changes. In Jan-Olof Eklundh, editor, Proc. ECCV-94, pages 286-296. Springer-Verlag, 1994.

[978]
Y. Moses, S. Ullman, and S. Edelman. Generalization to novel images in upright and inverted faces. Perception, 25:443-462, 1996.

[979]
Y. Moses and S. Ullman. Limitations of non model-based recognition schemes. In G. Sandini, editor, Proc. 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, volume 588, pages 820-828, Berlin, 1992. Springer Verlag.

[980]
Y. Moses. Computational approaches in face recognition. PhD thesis, Feinberg Graduate School of the Weizmann Institute of Science, 1993.

[981]
B. C. Motter and G. F. Poggio. Binocular fixation in the Rhesus monkey: spatial and temporal characteristics. Exp. Brain Res., 54:304-314, 1984.

[982]
B. C. Motter and G. F. Poggio. Dynamic stabilization of receptive fields of cortical neurons (V1) during fixation of gaze in the macaque. Exp. Brain Res., 83:37-43, 1990.

[983]
J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome. The analysis of moving visual patterns. In C. Chagas, R. Gattas, and C. G. Gross, editors, Pattern Recognition Mechanisms. Vatican Press, Rome, 1985.

[984]
J. A. Moyne. Understanding language: man or machine. Plenum Press, New York, 1985.

[985]
D. Mumford. Mathematical theories of shape: do they model perception? In Geometric methods in computer vision, volume 1570, pages 2-10, Bellingham, WA, 1991. SPIE.

[986]
D. Mumford. On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop. Biological Cybernetics, 65:135-145, 1991.

[987]
D. Mumford. On the computational architecture of the neocortex. II. The role of the cortico-cortical loops. Biological Cybernetics, 66:241-251, 1992.

[988]
D. Mumford. Neuronal architectures for pattern-theoretic problems. In C. Koch and J. L. Davis, editors, Large-scale neuronal theories of the brain, chapter 7, pages 125-152. MIT Press, Cambridge, MA, 1994.

[989]
D. Mumford. Pattern theory: a unifying perspective. In D. Knill and W. Richards, editors, Perception as Bayesian Inference. Cambridge Univ. Press, Cambridge, UK, 1996.

[990]
D. Mumford. The statistical description of visual signals. In K. Kirchgassner, O. Mahrenholtz, and R. Mennicken, editors, Proc. ICIAM 95, Berlin, 1996. Akademie Verlag.

[991]
D. Mumford. The mathematical modeling of cortical functioning and thought. In Proc. Norbert Wiener Centennial Conference, Providence, RI, 1997. Amer. Math. Society.

[992]
J. L. Mundy and A. J. Heller. The evolution and testing of a model-based object recognition system. In Proceedings of the 3rd International Conference on Computer Vision, pages 268-282. IEEE, Washington, DC, Osaka, 1990.

[993]
J. L. Mundy and A. Zisserman, editors. Geometric invariance in computer vision. MIT Press, Cambridge, MA, 1992.

[994]
H. Murase and S. Nayar. Visual learning and recognition of 3D objects from appearance. International Journal of Computer Vision, 14:5-24, 1995.

[995]
G. L. Murphy and D. L. Medin. The role of theories in conceptual coherence. Psychological Review, 92:289-316, 1985.

[996]
G. L. Murphy and E. J. Wisniewski. Categorizing objects in isolation and in scenes: what the superordinate is good for. J. Exp. Psychol.: Learning, Memory and Cognition, 15:572-586, 1989.

[997]
G. L. Murphy. Parts in object concepts: experiments with artificial categories. Memory & Cognition, 19:423-438, 1991.

[998]
F. A. Mussa-Ivaldi and S. F. Giszter. Vector field approximation: a computational paradigm for motor control and learning. Biological Cybernetics, 67:491-500, 1992.

[999]
F. A. Mussa-Ivaldi. From basis functions to basis fields: vector field approximation from sparse data. Biological Cybernetics, 67:479-490, 1992.

[1000]
S. Nag. The complex analytic theory of Teichmüller spaces. Wiley, New York, 1988.

[1001]
H.-H. Nagel and W. Enkelmann. Towards the estimation of displacement vector fields by `oriented smoothness' constraints. In Proceedings Int. Conf. on Pattern Recognition, pages 6-8, Montreal, Canada, July 1984.

[1002]
K. Nakayama and G. H. Silverman. The aperture problem ii: spatial integration of velocity information along contours. Vision Research, 28:739-746, 1988.

[1003]
D. Navon. Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9:353-383, 1977.

[1004]
D. Navon. Does attention serve to integrate features? Psychol. Review, 97:453-459, 1990.

[1005]
S. Nayar and R. Bolle. Reflectance ratio: a photometric invariant for object recognition. In Proceedings of the 4th International Conference on Computer Vision, pages 280-285, Washington, DC, 1993. IEEE.

[1006]
T. Nazir and J. K. O'Regan. Some results on translation invariance in the human visual system. Spatial vision, 5:81-100, 1990.

[1007]
S. Negahdaripour and B. K. P. Horn. Direct passive navigation. A.I. Memo No. 821, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1985.

[1008]
U. Neisser. Cognitive Psychology. Appleton-Century-Crofts, New York, NY, 1967.

[1009]
R. C. Nelson and J. Aloimonos. Using flow field divergence for obstacle avoidance: towards qualitative vision. In Proceedings of the 2nd International Conference on Computer Vision, pages 188-196, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1010]
R. C. Nelson and A. Selinger. A Cubist approach to object recognition. In Proc. CVPR, pages 614-621. IEEE, 1998.

[1011]
H. Neven and A. Aertsen. Rate coherence and event coherence in the visual cortex: a neuronal model of object recognition. biocyb, 67:309-322, 1992.

[1012]
F. Newell, P. Chiroro, and T. Valentine. Recognising unfamiliar faces: The effects of distinctiveness and view. Q. J. Exp. Psychol., 1996. submitted.

[1013]
F. Newell and J. M. Findlay. The effect of familiarity on the time to recognise depth-rotated objects. In Perception volume 22 supplement, page 22b, September 1993.

[1014]
A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ, 1972.

[1015]
W. T. Newsome and E. B. Paré. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci., 8:2201-2211, 1988.

[1016]
J. Nicod. Foundations of Geometry and Induction. Routledge & Kegan Paul, 1930.

[1017]
H. K. Nishihara and T. Poggio. Stereo vision for robotics. In J. M. Brady and R. Paul, editors, Robotics research: the first international symposium, pages 489-505. MIT Press, Cambridge, MA, 1984.

[1018]
H. K. Nishihara. Practical real-time imaging stereo matcher. Optical Engineering, 23(5):536-545, 1984.

[1019]
M. J. Nissen. Accessing features and objects: is location special? In M. I. Posner and O. S. Marin, editors, Attention and Performance, volume XI, pages 205-219. Erlbaum, 1985.

[1020]
M. Nitzberg and D. Mumford. The 2.1-D sketch. In Proceedings of the 1st International Conference on Computer Vision, pages 138-144, 1990.

[1021]
R. M. Nosofsky. Exemplar-based accounts of relations between classification, recognition, and typicality. Journal of Experimental Psychology: Learning, Memory and Cognition, 14:700-708, 1988.

[1022]
R. M. Nosofsky. Stimulus bias, asymmetric similarity, and classification. Cognitive Psychology, 23:94-140, 1991.

[1023]
R. M. Nosofsky. Tests of an exemplar model for relating perceptual classification and recognition memory. Journal of Experimental Psychology: Human Perception and Performance, 17:3-27, 1991.

[1024]
R. M. Nosofsky. Similarity scaling and cognitive process models. Annual Review of Psychology, 43:25-53, 1992.

[1025]
H.-C. Nothdruft. Feature analysis and the role of similarity in preattentive vision. Perception and Psychophysics, 52:355-375, 1992.

[1026]
S. J. Nowlan. Max likelihood competition in RBF networks. CRG TR-90-2, Univ. of Toronto, February 1990. to appear in Proc. NIPS-89.

[1027]
Y.-L. O, A. Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer, editors. Shape in picture: mathematical description of shape in grey-level images, volume 126 of NATO ASI Series F. Springer, Berlin, 1993.

[1028]
D. O'Carrol. Feature-detecting neurons in dragonflies. Nature, 362:541-543, 1993.

[1029]
K. N. Ogle. Researches in Binocular Vision. Hafner, New York, 1950.

[1030]
L. O'Gorman and J. V. Nickerson. An approach to fingerprint filter design. Pattern Recognition, 22:29-38, 1989.

[1031]
E. Oja. Neural networks, principal components, and subspaces. International Journal of Neural Systems, 1:61-68, 1989.

[1032]
A. O'Leary and M. McMahon. Adaptation to form distortion of a familiar shape. Perception and psychophysics, 49:328-332, 1991.

[1033]
B. Olshausen, C. Anderson, and D. Van Essen. A neurobiological model of visual attention and invariant pattern recognition based on dynamical routing of information. J. of Neuroscience, 13:4700-4717, 1993.

[1034]
S. M. Omohundro. Efficient algorithms with neural network behavior. UIUCDCS R-87-1331, Univ. of Illinois at Urbana-Champaign, April 1987.

[1035]
S. M. Omohundro. Efficient algorithms with neural network behavior. Complex Systems, 1:273-347, 1987.

[1036]
L. M. Optican and B. J. Richmond. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information Theoretic Analysis. J. of Neurophysiology, 57:162-178, 1987.

[1037]
K. O'Regan, R. Rensink, and J. J. Clark. Mud splashes render picture changes invisible. Invest. Ophthalm. Vis. Sci., 37(3):S213, 1996.

[1038]
J. K. O'Regan. Solving the real mysteries of visual perception: The world as an outside memory. Canadian J. of Psychology, 46:461-488, 1992.

[1039]
R. C. O'Reilly and M. H. Johnson. Object recognition and sensitive periods: A computational analysis of visual imprinting. Neural Computation, 6:357-389, 1994.

[1040]
R. C. O'Reilly. The LEABRA Model of Neural Interactions and Learning in the Neocortex. PhD thesis, CMU, 1996.

[1041]
C. E. Osgood. The similarity paradox in human learning: A resolution. Psychological Review, 56:132-143, 1949.

[1042]
D. N. Osherson and E. E. Smith. On the adequacy of prototype theory as a theory of concepts. Cognition, 9:35-58, 1981.

[1043]
A. J. O'Toole, H. Abdi, K. A. Deffenbacher, and D. Valentin. Low dimensional representation of faces in high dimensions of the space. Journal of the Optical Society of America, 10:405-410, 1993.

[1044]
A. O'Toole, K. Deffenbacher, D. Valentin, and H. Abdi. Structural aspects of face recognition and the other-race effect. Memory and Cognition, 22:208-224, 1994.

[1045]
A. J. O'Toole, H. Abdi, K. A. Deffenbacher, and D. Valentin. A perceptual learning theory of the information in faces. In T. Valentine, editor, Cognitive and Computational Aspects of Face Recognition, pages 159-182. Routledge, New York, NY, 1995.

[1046]
A. J. O'Toole, H. Bülthoff, and C. L. Walker. Face recognition across viewpoint. MPIK TR 21, Max Planck Institut für biologische Kybernetik, Tübingen, Germany, September 1995.

[1047]
A. J. O'Toole, S. Edelman, and H. Bülthoff. Face recognition and identification from novel viewpoints. MPIK TR 31, Max Planck Institut für biologische Kybernetik, Tübingen, Germany, June 1996.

[1048]
A. O'Toole, T. Vetter, N. Troje, and H. H. Bülthoff. Sex classification is better with three-dimensional head structure than with image intensity information. Perception, 26:75-84, 1997.

[1049]
A. J. O'Toole, S. Edelman, and H. H. Bülthoff. Stimulus-specific effects in face recognition over changes in viewpoint. Vision Research, 38:--, 1998. in press.

[1050]
A. J. O'Toole and S. Edelman. Face distinctiveness in recognition across viewpoint: An analysis of the statistical structure of face spaces. In I. Essa, editor, Proc. 2nd Intl. Conf. on Face and Gesture Recognition, pages 10-15, 1996.

[1051]
I. Otto, P. Grandguillaume, L. Boutkhil, and Y. Burnod. Direct and indirect cooperation between temporal and parietal networks for invariant visual recognition. J. Cognitive Neuroscience, 4:35-57, 1992.

[1052]
A. Paivio. The relationship between verbal and perceptual codes. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume VIII, pages 375-397. Academic Press, New York, NY, 1978.

[1053]
S. E. Palmer, E. Rosch, and P. Chase. Canonical perspective and the perception of objects. In J. Long and A. Baddeley, editors, Attention and Performance IX, pages 135-151. Erlbaum, Hillsdale, NJ, 1981.

[1054]
S. E. Palmer. Visual perception and world knowledge: Notes on a model of sensory-cognitive interaction. In D. A. Norman and D. E. Rumelhart, editors, Explorations in cognition. Erlbaum, Hillsdale, NJ, 1975.

[1055]
S. E. Palmer. Fundamental aspects of cognitive representation. In E. Rosch and B. B. Lloyd, editors, Cognition and Categorization, pages 259-303. Erlbaum, Hillsdale, NJ, 1978.

[1056]
S. E. Palmer. The psychology of perceptual organization: a transformational approach. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and machine vision, pages 269-340. Academic Press, New York, 1983.

[1057]
A. J. Parker and M. J. Hawken. Capabilities of monkey cortical cells in spatial resolution tasks. Journal of the Optical Society of America, 2:1101-1114, 1985.

[1058]
A. J. Parker and M. J. Hawken. Hyperacuity and the visual cortex. Nature, 326:105-106, 1987.

[1059]
D. E. Pearson and J. A. Robinson. Visual communication at very low data rates. Proc. IEEE, 73:795-812, 1985.

[1060]
D. E. Pearson. The extraction and use of facial features in low bit-rate visual communication. Phil. Trans. R. Soc. Lond. B, 335:79-85, 1992.

[1061]
C. S. Peirce. Questions concerning certain faculties claimed for man. Journal of Speculative Philosophy, 2:103-114, 1868.

[1062]
A. Pentland, T. Starner, N. Etcoff, A. Masoiu, O. Oliyide, and M. Turk. Experiments with eigenfaces. In Looking at People Workshop, IJCAI 93, 1993.

[1063]
A. Pentland and S. Sclaroff. Closed-form solutions for physically based shape modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:715-729, 1991.

[1064]
A. Pentland. A new sense for depth of field. In Proceedings IJCAI, pages 988-994, 1985.

[1065]
A. Pentland. From pixels to predicates. Ablex, Norwood, NJ, 1986.

[1066]
A. P. Pentland. Shading into texture. Artificial Intelligence, 29:147-170, 1986.

[1067]
A. Pentland. Shape information from shading: a theory about human perception. In Proceedings of the 2nd International Conference on Computer Vision, pages 404-413, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1068]
D. N. Perkins. Pictures and the real thing. In P. A. Kolers, M. E. Wrolstad, and H. Bouma, editors, Processing of visible language 2, pages 259-278. Plenum Press, New York, 1980.

[1069]
D. I. Perrett, E. T. Rolls, and W. Caan. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res., 47:329-342, 1982.

[1070]
D. I. Perrett, P. A. J. Smith, D. D. Potter, A. J. Mistlin, A. S. Head, A. D. Milner, and M. A. Jeeves. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London B, 223:293-317, 1985.

[1071]
D. I. Perrett, A. J. Mistlin, and A. J. Chitty. Visual neurones responsive to faces. Trends in Neurosciences, 10:358-364, 1987.

[1072]
D. I. Perrett, M. W. Oram, M. H. Harries, R. Bevan, J. K. Hietanen, P. J. Benson, and S. Thomas. Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp. Brain Research, 86:159-173, 1991.

[1073]
D. I. Perrett and M. H. Harries. Characteristic views and the visual inspection of simple faceted and smooth objects: tetrahedra and potatoes. Perception, 17:703-720, 1988.

[1074]
J. T. Petersik. The effect of spatial and temporal factors on the perception of stroboscopic rotation simulations. Perception, 9:271-283, 1980.

[1075]
M. A. Peterson, E. M. Harvey, and H. J. Weidenbacher. Shape recognition contributions to figure-ground reversal: Which route counts? Journal of Experimental Psychology: Human Perception and Performance, 17:1075-1089, 1991.

[1076]
M. A. Peterson and B. S. Gibson. Directing spatial attention within an object: Altering the functional equivalence of shape description. Journal of Experimental Psychology: Human Perception and Performance, 17:170-182, 1991.

[1077]
M. A. Peterson and B. S. Gibson. The initial identification of figure-ground relationships: Contributions from shape recognition processes. Bulletin of the Psychonomic Society, 29:199-202, 1991.

[1078]
M. A. Peterson and B. S. Gibson. Shape recognition inputs to figure-ground organization in three-dimensional grounds. Cognitive Psychology, 25:383-429, 1993.

[1079]
M. A. Peterson and B. S. Gibson. Must figure-ground organization precede object recognition? An assumption in peril. Psychological Science, 5:253-259, 1994.

[1080]
M. A. Peterson and B. S. Gibson. Object recognition contributions to figure-ground organization: Operations on outlines and subjective contours. Perception & Psychophysics, 56:551-564, 1994.

[1081]
M. A. Peterson. Object recognition processes can and do operate before figure-ground organization. Current Directions in Psychological Science, 3:105-111, 1994.

[1082]
S. Petry and G. E. Meyer. The perception of illusory contours. Springer, Berlin, 1987.

[1083]
M. W. Pettet and C. D. Gilbert. Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Science, 89:8366-8370, 1992.

[1084]
K. Pezdek, T. Whetstone, K. Reynolds, N. Askari, and T. Dougherty. Memory for real-world scenes: the role of consistency with schema expectation. Journal of Experimental Psychology: Learning, Memory and Cognition, 15:587-595, 1989.

[1085]
F. Phillips and J. T. Todd. Perception of local three-dimensional shape. J. Exp. Psychol.: HPP, 22:230-244, 1996.

[1086]
W. A. Phillips. On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16:283-290, 1974.

[1087]
B. T. Phong. Illumination for computer generated pictures. Communications of the ACM, 18:311-317, 1975.

[1088]
M. Piatelli-Palmarini. Evolution, selection and cognition: from learning to parameter setting in biology and in the study of language. Cognition, 31:1-44, 1989.

[1089]
C. Pickover. Computers, Pattern, Chaos, and Beauty. St. Martin's Press, 1990.

[1090]
S. Pinker, editor. Visual Cognition. MIT Press, Cambridge, MA, 1985. special issue of Cognition.

[1091]
W. Pitts and W. S. McCulloch. How we know universals: the perception of auditory and visual forms. In Embodiments of mind, pages 46-66. MIT Press, Cambridge, MA, 1947/1965.

[1092]
C. G. C. Pitts. Introduction to metric spaces. Oliver & Boyd, Edinburgh, 1972.

[1093]
Z. Pizlo, A. Rosenfeld, and I. Weiss. Visual space: mathematics, engineering and science. Computer Vision, Graphics, and Image Processing: Image Understanding, 65:450-454, 1997.

[1094]
Plato. Theaetetus. The Internet, -360. translated by B. Jowett; available electronically at URL gopher://gopher.vt.edu:10010/02/131/23.

[1095]
J. Platt. A resource-allocating network for function interpolation. Neural Computation, 3:213-225, 1991.

[1096]
D. C. Plaut and M. J. Farah. Visual object representation: interpreting neurophysiological data within a computational framework. J. of Cognitive Neuroscience, 2:320-343, 1990.

[1097]
T. Poggio, H. K. Nishihara, and K. R. K. Nielsen. Zero-crossings and spatiotemporal interpolation in vision: aliasing and electrical coupling between sensors. A.I. Memo No. 675, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1982.

[1098]
T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature, 317:314-319, 1985.

[1099]
T. Poggio, E. B. Gamble, and J. J. Little. Parallel integration of vision modules. Science, 242:436-440, 1988.

[1100]
T. Poggio, W. Yang, and V. Torre. Optical flow: computational properties and networks, biological and analog. In R. Durbin, C. Miall, and G. Mitchison, editors, The computing neuron, pages 355-370. Addison Wesley, New York, NY, 1989.

[1101]
T. Poggio, M. Fahle, and S. Edelman. Synthesis of visual modules from examples: learning hyperacuity. A.I. Memo No. 1271, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991.

[1102]
T. Poggio, S. Edelman, and M. Fahle. Learning of visual modules from examples: a framework for understanding adaptive visual performance. Computer Vision, Graphics, and Image Processing: Image Understanding, 56:22-30, 1992.

[1103]
T. Poggio, M. Fahle, and S. Edelman. Fast perceptual learning in visual hyperacuity. Science, 256:1018-1021, 1992.

[1104]
T. Poggio and S. Edelman. A network that learns to recognize three-dimensional objects. Nature, 343:263-266, 1990.

[1105]
T. Poggio and F. Girosi. A theory of networks for approximation and learning. A.I. Memo No. 1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1989.

[1106]
T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247:978-982, 1990.

[1107]
T. Poggio and A. Hurlbert. Observations on cortical mechanisms for object recognition and learning. In C. Koch and J. Davis, editors, Large Scale Neuronal Theories of the Brain, pages 153-182. MIT Press, Cambridge, MA, 1994.

[1108]
G. F. Poggio and T. Poggio. The analysis of stereopsis. Ann. Rev. Neurosci., 7:379-412, 1984.

[1109]
T. Poggio and W. Reichardt. Visual control of orientation behavior in the fly (parts i and ii). Quart. Rev. Biophys., 3:311-439, 1976.

[1110]
Tomaso Poggio and the staff. MIT progress in understanding images. In Proceedings Image Understanding Workshop, Cambridge, MA,, April 1988. Morgan Kaufmann, San Mateo, CA.

[1111]
T. Poggio and T. Vetter. Recognition and structure from one 2D model view: observations on prototypes, object classes, and symmetries. A.I. Memo No. 1347, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1992.

[1112]
T. Poggio. A theory of how the brain might work. Cold Spring Harbor Symposia on Quantitative Biology, LV:899-910, 1990.

[1113]
H. Poincaré. Mathematics and Science: Last Essays. Dover, New York, 1913/1963. translated by J. W. Bolduc.

[1114]
U. Polat and D. Sagi. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. CS-TR 24, Weizmann Institute of Science, 1991.

[1115]
U. Polat and D. Sagi. Lateral interactions between spatial filters: excitation and inhibition affected by spatial configuration. Perception, 21 (suppl.2):92, 1992.

[1116]
U. Polat and D. Sagi. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Research, 33:993-997, 1993.

[1117]
U. Polat and D. Sagi. The architecture of perceptual spatial interactions. Vision Research, 34:73-78, 1994.

[1118]
U. Polat and D. Sagi. Spatial interactions in human vision: from near to far via experience dependent cascades of connections. Proceedings of the National Academy of Science, 1994. in press.

[1119]
S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. A stereo correspondence algorithm using a disparity gradient limit. Perception, 14:449-470, 1985.

[1120]
D. Pollard. Convergence of stochastic processes. Springer, New York, NY, 1984.

[1121]
A. Pollatsek, K. Rayner, and W. E. Collins. Integrating pictorial information across eye movements. J. Exp. Psychol.: General, 113:426-442, 1984.

[1122]
J. R. Pomerantz and E. A. Pristach. Emergent features, attention, and perceptual glue in visual form perception. Journal of Experimental Psychology: Human Perception and Performance, 15:635-649, 1989.

[1123]
M. I. Posner. Chronometric explorations of mind. Erlbaum, Hillsdale, NJ, 1978.

[1124]
M. Potter. Meaning in visual search. Science, 187:965-966, 1975.

[1125]
M. Pötzsch, N. Krüger, and C. von der Malsburg. Improving object recognition by transforming Gabor filter responses. Network, 7:341-347, 1996.

[1126]
A. Pouget and T. J. Sejnowski. Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9:222-237, 1997.

[1127]
M. J. D. Powell. Radial basis functions for multivariable interpolation: a review. In J. C. Mason and M. G. Cox, editors, Algorithms for approximation. Clarendon Press, Oxford, 1987.

[1128]
K. Prazdny. Egomotion and relative depth map from optical flow. Biological Cybernetics, 36:87-102, 1980.

[1129]
K. Prazdny. On the information in optical flow. Computer Vision, Graphics, and Image Processing, 22:239-259, 1983.

[1130]
K. Prazdny. Detection of binocular disparities. Biological Cybernetics, 52:93-99, 1985.

[1131]
F. P. Preparata and M. I. Shamos. Computational Geometry. Springer Verlag, New York, 1985.

[1132]
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

[1133]
D. Price, S. Knerr, L. Personnaz, and G. Dreyfus. Pairwise neural network classifiers with probabilistic outputs. In D. S. Touretzky G. Tesauro and T. K. Leen, editors, Advances in Neural Information Processing 7, pages 1109-1116. MIT Press, 1995.

[1134]
C. J. Price and G. W. Humphreys. The effects of surface detail on object categorization and naming. Quarterly J. Exp. Psych. A, 41:797-828, 1989.

[1135]
H. Putnam. Minds and machines. In S. Hook, editor, Dimensions of mind. New York University Press, New York, NY, 1960.

[1136]
H. Putnam. Mind, language and reality. Cambridge University Press, Cambridge, 1975.

[1137]
H. Putnam. Representation and reality. MIT Press, Cambridge, MA, 1988.

[1138]
Z. Pylyshyn. What the mind's eye tells the mind's brain: a critique of mental imagery. Psychological Bulletin, 80:1-24, 1973.

[1139]
Z. Pylyshyn. Computation and cognition. MIT Press, Cambridge, MA, 1985.

[1140]
Z. Pylyshyn. The role of location indexes in spatial perception: a sketch of the finst spatial-index model. Cognition, 32:65-97, 1989.

[1141]
N. Qian and Y. Zhu. Physiological computation of binocular disparity. Vision Research, 37:--, 1997. in press.

[1142]
W. V. O. Quine. On what there is. In From a Logical Point of View, pages 1-16. Harvard University Press, Cambridge, 1953.

[1143]
W. V. O. Quine. Word and object. MIT Press, Cambridge, MA, 1960.

[1144]
W. V. O. Quine. Natural kinds. In Ontological relativity and other essays, pages 114-138. Columbia University Press, New York, NY, 1969.

[1145]
W. V. O. Quine. The roots of reference. Open Court, La Salle, IL, 1973.

[1146]
J. Ross Quinlan and R. L. Rivest. Inferring decision trees using the minimum description length principle, 1987. manuscript.

[1147]
P. Quinlan. Visual object recognition reconsidered, 1989. unpublished manuscript.

[1148]
P. Rakic and W. Singer, editors. Neurobiology of Neocortex. Wiley, New York, NY, 1988.

[1149]
V. Ramachandran and S. M. Anstis. The perception of apparent motion. Scientific American, 254:102-109, June 1986.

[1150]
V. S. Ramachandran. Perception of shape from shading. Nature, 331:163-166, 1988.

[1151]
M. Rapp, Y. Yarom, and I. Segev. The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Computation, 4:518-533, 1992.

[1152]
R. Ratcliff. Parallel processing mechanisms and processing of organized information in human memory. In J. A. Anderson and G. E. Hinton, editors, Parallel models of associative memory. Erlbaum, Hillsdale, NJ, 1981.

[1153]
F. Ratliff and L. Sirovich. Equivalence classes of visual stimuli. Vision Research, 18:845-851, 1978.

[1154]
L. Reder and R. L. Klatzky. Transfer: training for performance. In D. Druckman and R. A. Bjork, editors, Learning, remembering, believing: enhancing human performance, chapter 3, pages 25-56. National Academy Press, Washington, DC, 1994. Also available as TR CMU-CS-94-187; The effect of context on training: is learning situated?

[1155]
D. L. Reilly, L. N. Cooper, and C. Elbaum. A neural model for category learning. Biological Cybernetics, 45:35-41, 1982.

[1156]
D. Reisfeld, H. Wolfson, and Y. Yeshurun. Detection of interest points using symmetry. In Proceedings of the 3rd International Conference on Computer Vision, pages 62-65, Tokyo, 1990. IEEE, Washington, DC.

[1157]
L. Rendell and R. Seshu. Learning hard concepts through constructive induction: framework and rationale. In S. J. Hanson, G. A. Drastal, and R. L. Rivest, editors, Computational learning theory and natural learning systems, volume 1, chapter 5, pages 83-141. MIT Press, Cambridge, MA, 1994.

[1158]
R. Rensink, K. O'Regan, and J. J. Clark. Image flicker is as good as saccades in making large scene changes invisible. Perception, 24 (suppl.):26-27, 1995.

[1159]
R. Rensink, K. O'Regan, and J. J. Clark. To see or not to see: the need for attention to perceive changes in scenes. Invest. Ophthalm. Vis. Sci., 37(3):S213, 1996.

[1160]
I. Rentschler, M. Jüttner, and T. Caelli. Probabilistic analysis of human supervised learning and classification. Vision Research, 34:669-687, 1994.

[1161]
I. Rentschler and T. Caelli. Visual representations in the brain: inferences from psychophysical research. In H. Haken and M. Stadler, editors, Synergetics of Cognition, volume 45, pages 233-248. 1990.

[1162]
Yu. G. Reshetnyak. Space mappings with bounded distortion, volume 73 of Translations of mathematical monographs. Amer. Math. Soc., Providence, RI, 1989.

[1163]
G. Rhodes, S. Brennan, and S. Carey. Identification and rating of caricatures: implications for mental representations of faces. Cognitive Psychology, 19:473-497, 1987.

[1164]
G. Rhodes and I. G. McLean. Distinctiveness and expertise effects with homogeneous stimuli: towards a model of configural coding. Perception, 19:773-794, 1990.

[1165]
G. Rhodes. Looking at faces: first-order and second-order features as determinants of facial appearance. Perception, 17:43-63, 1988.

[1166]
W. Richards, H. R. Wilson, and M. A. Sommer. Chaos in percepts? Biological Cybernetics, 70:345-349, 1994.

[1167]
W. Richards, A. Jepson, and J. Feldman. Priors, preferences and categorical percepts. In D. Knill and W. Richards, editors, Perception as Bayesian Inference, pages 93-122. Cambridge University Press, 1996.

[1168]
W. Richards and A. Jepson. What makes a good feature? A.I. Memo No. 1356, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, April 1992.

[1169]
W. Richards and J. J. Koenderink. Trajectory mapping (``TM''): A new non-metric scaling technique. A.I. Memo No. 1468, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1993.

[1170]
W. Richards. How to play twenty questions with nature and win. A.I. Memo No. 660, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, December 1982.

[1171]
W. Richards, editor. Natural computation. MIT Press, Cambridge, MA, 1988.

[1172]
B. J. Richmond, L. M. Optican, M. Podell, and H. Spitzer. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response Characteristics. J. of Neurophysiology, 57:132-146, 1987.

[1173]
B. J. Richmond and L. M. Optican. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of Response Waveform. J. of Neurophysiology, 57:148-161, 1987.

[1174]
J. Richter and S. Ullman. A model for the temporal organization of X-- and Y-type receptive fields in the primate retina. Biological Cybernetics, 43:127-145, 1982.

[1175]
J. Richter and S. Ullman. Non-linearities in cortical simple cells and the possible detection of zero-crossings. Biological Cybernetics, 53:195-202, 1986.

[1176]
M. Riesenhuber and P. Dayan. Neural models for the part-whole hierarchies. In M. Jordan, editor, Advances in Neural Information Processing, volume 9, pages 17-23. MIT Press, 1997.

[1177]
M. Riesenhuber and T. Poggio. Just one view: Invariances in inferotemporal cell tuning. In M. J. Kearns M. I. Jordan and S. A. Solla, editors, Advances in Neural Information Processing, volume 10, pages --. MIT Press, 1998. in press.

[1178]
J. Rimer. Learning to control a robotic arm using Radial Basis Function interpolation, 1991.

[1179]
H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Topology-conserving maps for learning visuo-motor-coordination. Neural Networks, 2:159-168, 1989.

[1180]
P. Rives, B. Bouthemy, B. Prasada, and E. Dubois. Recovering the orientation and the position of a rigid body in space from a single view. Technical report, INRS-Telecommunications, Quebec, Canada, 1981.

[1181]
I. Rock, J. DiVita, and R. Barbeito. The effect on form perception of change of orientation in the third dimension. Journal of Experimental Psychology: Human Perception and Performance, 7:719-732, 1981.

[1182]
I. Rock, D. Wheeler, and L. Tudor. Can we imagine how objects look from other viewpoints? Cognitive Psychology, 21:185-210, 1989.

[1183]
I. Rock, C. Schreiber, and T. Ro. The dependence of two-dimensional shape perception on orientation. Perception, 23:1409-1426, 1994.

[1184]
I. Rock and J. DiVita. A case of viewer-centered object perception. Cognitive Psychology, 19:280-293, 1987.

[1185]
I. Rock and C. Linnett. Is a perceived shape based on its retinal image? Perception, 22:61-76, 1993.

[1186]
I. Rock. Orientation and form. MIT Press, Cambridge, MA, 1973.

[1187]
I. Rock. The perception of disoriented figures. Scientific American, 230:78-85, 1974.

[1188]
I. Rock. Perception. Scientific American Books, New York, 1984.

[1189]
I. Rock. On thompson's inverted face phenomenon. Perception, 17:815-817, 1988.

[1190]
B. Rogers and R. Cagenello. Disparity curvature and the perception of three-dimensional surfaces. Nature, 339:135-137, 1989.

[1191]
A. Rojer and E. L. Schwartz. A multiple-map model for pattern classification. Neural Computation, 1:104-115, 1989.

[1192]
P. E. Roland and B. Gulyas. Visual imagery and visual representation. Trends in Neurosciences, 17:281-286, 1994.

[1193]
E. T. Rolls, G. C. Baylis, M. E. Hasselmo, and V. Nalwa. The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Exp. Brain Res., 76:153-164, 1989.

[1194]
E. T. Rolls, M. J. Tovee, and V. S. Ramachandran. Visual learning reflected in the responses of neurons in the temporal visual cortex of the macaque. Society for Neuroscience Abstracts, 19:27, 1993.

[1195]
E. T. Rolls, M. J. Tovee, D. G. Purcell, A. L. Stewart, and P. Azzopardi. The responses of neurons in the temporal cortex of primates, and face identification and detection. Exp. Brain Research, 101:473-484, 1994.

[1196]
E. T. Rolls and M. J. Tovee. Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proceedings of the Royal Society of London B, 257:9-15, 1994.

[1197]
E. T. Rolls and M. J. Tovee. The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field. Exp. Brain Res., 103:409-420, 1995.

[1198]
E. T. Rolls and M. J. Tovee. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. of Neurophysiology, 73:713-726, 1995.

[1199]
E. T. Rolls. Neural organization of higher visual functions. Current Opinion in Neurobiology, 1:274-278, 1991.

[1200]
E. T. Rolls. Brain mechanisms for invariant visual recognition and learning. Behavioral Processes, 33:113-138, 1994.

[1201]
E. T. Rolls. Visual processing in the temporal lobe for invariant object recognition. In V. Torre and T. Conti, editors, Neurobiology, pages 325-353. Plenum Press, New York, 1996.

[1202]
E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-Braem. Basic objects in natural categories. Cognitive Psychology, 8:382-439, 1976.

[1203]
E. Rosch. Principles of categorization. In E. Rosch and B. Lloyd, editors, Cognition and Categorization, pages 27-48. Erlbaum, Hillsdale, NJ, 1978.

[1204]
D. Rose and V. G. Dobson, editors. Models of the visual cortex. Wiley, New York, NY, 1985.

[1205]
D. Rose. Some reflections on (or by?) grandmother cells. Perception, 25:881-884, 1996.

[1206]
A. Rosenfeld and M. Thurston. Edge and curve detection for visual scene analysis. IEEE Trans. Computers, 20:562-569, 1971.

[1207]
A. Rosenfeld. Recognizing unexpected objects: a proposed approach. Int. J. of Pattern Recognition and Artificial Intelligence, 1:71-84, 1987.

[1208]
J. Rubner and K. Schulten. Development of feature detectors by self-organization. Biological Cybernetics, 62:193-199, 1990.

[1209]
D. L. Ruderman. Designing receptive fields for highest fidelity. Network, 5:147-155, 1994.

[1210]
D. L. Ruderman. The statistics of natural images. Network, 5:517-548, 1994.

[1211]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323:533-536, 1986.

[1212]
D. E. Rumelhart, J. L. McClelland, and The PDP Research Group. Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Cambridge, MA, 1986.

[1213]
D. E. Rumelhart and P. M. Todd. Learning and connectionist representations. In D. E. Meyer and S. Kornblum, editors, Attention and Performance XIV, pages 3-34. MIT Press, 1993.

[1214]
D. E. Rumelhart. Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce, and W. F. Brewer, editors, Theoretical Issues in Reading and Comprehension. Erlbaum, Hillsdale, NJ, 1980.

[1215]
B. Russell. Analysis of Mind. Allen and Unwin, London, 1921.

[1216]
E. M. Saffran and M. F. Schwartz. Of cabbages and things: semantic memory from a neuropsychological perspective --- a tutorial review. In C. Umiltá and M. Moscovitch, editors, Attention and Performance, volume XV, chapter 20, pages 507-536. MIT Press, 1994.

[1217]
D. Sagi and D. Tanne. Perceptual learning: learning to see. Current opinion in neurobiology, 4:195-199, April 1994.

[1218]
A. Saha and J. D. Keeler. Algorithms for better representation and faster learning in Radial Basis Function networks. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 482-489. Morgan Kaufmann, San Mateo, CA, 1990.

[1219]
A. Saidpur, M. Braunstein, and D. D. Hoffman. Interpolation in structure from motion. Perception and Psychophysics, 51:105-117, 1992.

[1220]
K. Sakai, Y. Naya, and Y. Miyashita. Neuronal tuning and associative mechanisms in form representation. Learning and Memory, 1:83-105, 1994.

[1221]
K. Sakai and Y. Miyashita. Neural organization for the long-term memory of paired associates. Nature, 354:152-155, 1991.

[1222]
K. Sakai and Y. Miyashita. Memory and imagery in the temporal lobe. Current Opinion in Neurobiology, 3:166-170, 1993.

[1223]
K. Sakai and Y. Miyashita. Neuronal tuning to learned complex forms in vision. NeuroReport, 5:829-832, 1994.

[1224]
P. Salapatek and L. B. Cohen, editors. Handbook of infant perception. Academic Press, New York, 1987.

[1225]
E. Sali and S. Ullman. Recognizing novel 3-D objects under new illumination and viewing position using a small number of example views or even a single view. In Proc. ICCV, pages --. IEEE, 1998.

[1226]
C. D. Salzman, K. H. Britten, and W. T. Newsome. Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346:174-177, 1990.

[1227]
J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans. Comput., 18:401-409, 1969.

[1228]
T. Sanger. Optimal unsupervised learning in feedforward neural networks. AI Lab TR 1086, MIT, 1989.

[1229]
T. D. Sanger. Analysis of the two-dimensional receptive fields learned by the generalized Hebbian algorithm in response to random input. Biological Cybernetics, 63:221-228, 1990.

[1230]
T. Sanocki. Visual knowledge underlying letter perception: font-specific schematic tuning. J. Exp. Psychol.: HPP, 13:267-278, 1987.

[1231]
G. Sartori, R. Job, and M. Coltheart. The organization of object knowledge: evidence from neuropsychology. In D. E. Meyer and S. Kornblum, editors, Attention and Performance, volume XIV, pages 451-464. Lawrence Erlbaum, Hillsdale, NJ, 1993.

[1232]
R. R. Sarukkai. Supervised networks that self-organize class outputs. Neural Computation, 9:637-648, 1997.

[1233]
SAS/STAT User's Guide, Version 6. SAS Institute Inc., Cary, NC, 1989.

[1234]
B. Schiele and J. L. Crowley. Object recognition using multidimensional receptive field histograms. In B. Buxton and R. Cipolla, editors, Proc. ECCV'96, volume 1 of Lecture Notes in Computer Science, pages 610-619, Berlin, 1996. Springer.

[1235]
S. Schiffer. Remnants of meaning. MIT Press, 1987.

[1236]
I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39:811-840, 1938.

[1237]
H. Schutze. Dimensions of meaning. In Proceedings of Supercomputing Symposium, pages 787-796, Minneapolis, MN, 1992.

[1238]
E. L. Schwartz, R. Desimone, T. D. Albright, and C. G. Gross. Shape recognition and inferior temporal neurons. Proceedings of the National Academy of Science, 80:5776-5778, 1983.

[1239]
E. L. Schwartz. Anatomical and physiological correlates of visual computation from striate to infero-temporal cortex. IEEE Trans. on Sys. Man Cybern, SMC-14:257-271, 1984.

[1240]
E. L. Schwartz. Local and global functional architecture in primate striate cortex: outline of a spatial mapping doctrine for perception. In D. Rose and V. G. Dobson, editors, Models of the visual cortex, pages 146-157. Wiley, New York, NY, 1985.

[1241]
J. Schwartz. The new connectionism. Proc. AAAS, 117:123-141, 1988.

[1242]
P. G. Schyns, R. L. Goldstone, and J.-P. Thibaut. The development of features in object concepts. Behavioral and Brain Sciences, -:--, 1998. in press.

[1243]
P. G. Schyns. Diagnostic recognition: task constraints, object information, and their interactions. Cognition, 1998. in press.

[1244]
S. Sclaroff and A. Pentland. Modal matching for correspondence and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:545-561, 1995.

[1245]
S. Sclaroff. Deformable prototypes for encoding shape categories in image databases. Pattern Recognition, 30:627-641, 1997.

[1246]
M. Seibert and A. M. Waxman. Learning aspect graph representations from view sequences. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 258-265. Morgan Kaufmann, San Mateo, CA, 1990.

[1247]
M. Seibert and A. M. Waxman. Adaptive 3D object recognition from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:107-124, 1992.

[1248]
R. Sekuler and R. Blake. Perception. Alfred Knopf, New York, 1985.

[1249]
O. G. Selfridge. Pandemonium: a paradigm for learning. In The mechanisation of thought processes. H.M.S.O., London, 1959.

[1250]
J. Serra. Image analysis and mathematical morphology. Academic Press, New York, 1982.

[1251]
M. N. Shadlen and W. T. Newsome. Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4:569-579, 1994.

[1252]
S. A. Shafer and T. Kanade. Using shadows in finding surface orientation. Computer Vision, Graphics, and Image Processing, 22:145-176, 1983.

[1253]
Y. Shapira and S. Ullman. A pictorial approach to object classification. In Proceedings IJCAI, pages 1257-1263, 1991.

[1254]
R. Shapley and J. Victor. Hyperacuity in cat retinal ganglion cells. Science, 231:999-1002, 1986.

[1255]
A. Shashua and S. Ullman. Structural saliency: the detection of globally salient structures using a locally connected network. In Proceedings of the 2nd International Conference on Computer Vision, pages 321-327, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1256]
A. Shashua. Correspondence and affine shape from two orthographic view: motion and recognition. A.I. Memo No. 1327, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, December 1991.

[1257]
A. Shashua. Illumination and view position in 3D visual recognition. In J. Moody, S. J. Hanson, and R. L. Lippman, editors, Neural Information Processing Systems, volume 4, pages 404-411, San Mateo, CA, 1992. Morgan Kaufmann.

[1258]
A. Shashua. Algebraic functions for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:779-789, 1995.

[1259]
R. N. Shepard and P. Arabie. Additive clustering: representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86:87-123, 1979.

[1260]
R. N. Shepard and G. W. Cermak. Perceptual-cognitive explorations of a toroidal set of free-form stimuli. Cognitive Psychology, 4:351-377, 1973.

[1261]
R. N. Shepard and S. Chipman. Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1:1-17, 1970.

[1262]
R. N. Shepard and L. A. Cooper. Mental images and their transformations. MIT Press, Cambridge, MA, 1982.

[1263]
R. N. Shepard and S. Kannappan. Connectionist implementation of a theory of generalization. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 665-672. Morgan Kaufmann, 1993.

[1264]
R. N. Shepard and J. Metzler. Mental rotation of three-dimensional objects. Science, 171:701-703, 1971.

[1265]
S. Shepard and D. Metzler. Mental rotation: effects of dimensionality of objects and type of task. J. Exp. Psychol.: Human Perception and Performance, 14:3-11, 1988.

[1266]
R. N. Shepard. The analysis of proximities: Multidimensional scaling with unknown distance function. part i. Psychometrika, 27(2):125-140, 1962.

[1267]
R. N. Shepard. The analysis of proximities: Multidimensional scaling with unknown distance function. part ii. Psychometrika, 27(2):219-246, 1962.

[1268]
R. N. Shepard. Attention and the metric structure of the stimulus space. Journal of Mathematical Psychology, 1:54-87, 1964.

[1269]
R. N. Shepard. Metric structures in ordinal data. J. Math. Psychology, 3:287-315, 1966.

[1270]
D. Shepard. A two-dimensional interpolation function for irregularly spaced data. In Proc. 23rd National Conference ACM, pages 517-524. ACM, 1968.

[1271]
R. N. Shepard. Cognitive psychology: A review of the book by U. Neisser. Amer. J. Psychol., 81:285-289, 1968.

[1272]
R. N. Shepard. Form, formation, and transformation of internal representations. In R. L. Solso, editor, Information processing and cognition: the Loyola Symposium, pages 87-122, Hillsdale, NJ, 1975. Erlbaum.

[1273]
R. N. Shepard. Multidimensional scaling, tree-fitting, and clustering. Science, 210:390-397, 1980.

[1274]
R. N. Shepard. Ecological constraints on internal representation: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review, 91:417-447, 1984.

[1275]
R. N. Shepard. Toward a universal law of generalization for psychological science. Science, 237:1317-1323, 1987.

[1276]
J. W. Shepherd. An interactive computer system for retrieving faces. In H. D. Ellis, M. A. Jeeves, and F. Newcombe, editors, Aspects of face processing, pages 398-409. Martinus Nijhoff, Dordrecht, 1986.

[1277]
G. M. Shepherd. Modules for molecules. Nature, 358:457-458, 1992. News and Views.

[1278]
B. G. Sherlock and D. M. Monro. A model for interpreting fingerprint topology. Pattern Recognition, 26:1047-1055, 1993.

[1279]
J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In Proc. CVPR, pages 1154-1160. IEEE, 1998.

[1280]
L. Shiu and H. Pashler. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Perception and Psychophysics, 52:582-588, 1992.

[1281]
G. L. Shulman, M. A. Sullivan, K. Gish, and W. J. Sakoda. The role of spatial-frequency channels in the perception of local and global structure. Perception, 15:259-273, 1986.

[1282]
G. L. Shulman and J. Wilson. Spatial frequency and selective attention to local and global information. Perception, 16:89-101, 1987.

[1283]
G. L. Shulman and J. Wilson. Spatial frequency and selective attention to spatial location. Perception, 16:103-111, 1987.

[1284]
H. Shvaytser. Learnable and nonlearnable visual concepts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:459-466, 1990.

[1285]
H. Shvaytser. Towards a computational theory of model based vision and perception. In Proceedings of the 3rd International Conference on Computer Vision, Tokyo, 1990. IEEE, Washington, DC.

[1286]
W. Siedlecki, K. Siedlecka, and J. Sklansky. An overview of mapping techniques for exploratory pattern analysis. Pattern Recognition, 21:411-429, 1988.

[1287]
P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop -- a formalism for specifying selected invariances in an adaptive network. In J. Moody, R. Lippman, and S. J. Hanson, editors, Neural Information Processing Systems, volume 4, pages 895-903. Morgan Kaufmann, San Mateo, CA, 1992.

[1288]
E. P. Simoncelli and E. H. Adelson. Subband transforms. In J. W. Woods, editor, Subband image coding, chapter 4, pages 143-192. Kluwer Academic, 1990.

[1289]
D. J. Simons and D. T. Levin. Change blindness. Trends in Cognitive Science, 1:261-267, 1997.

[1290]
D. J. Simons. In sight, out of mind: When object representations fail. Psychological Science, 7:301-305, 1996.

[1291]
K. Sims. Interactive evolution of dynamical systems. In Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pages 171-178, Paris, December 1991. MIT Press.

[1292]
K. Sims. Artificial evolution for computer graphics. Computer Graphics (ACM/Siggraph '91 proceedings), 25:319-328, July 1991.

[1293]
W. Singer and C. M. Gray. Visual feature integration and the temporal correlation hypothesis. Annual review of neuroscience, 18:555-586, 1995.

[1294]
M. K. Singley and J. R. Anderson. The transfer of cognitive skill. Harvard U. Press, Cambridge, MA, 1989.

[1295]
P. Sinha and E. Adelson. Recovering 3-D shapes from 2-D line drawings. In M. Vidyasagar, editor, Intelligent Robotics: Proc. 2nd Intl. Symp., pages 51-60, New Delhi, January 1993. Tata McGraw-Hill.

[1296]
P. Sinha and T. Poggio. Role of learning in three-dimensional form perception. Nature, 384:460-463, 1996.

[1297]
J. Sirosh, R. Miikkulainen, and Y. Choe, editors. Lateral Interactions in the Cortex: Structure and Function. electronic book, http://www.cs.utexas.edu/users/nn/lateral_interactions_book/cover.html edition, 1995.

[1298]
E. Sklar, H. H. Bulthoff, S. Edelman, and R. Basri. Generalization of object recognition across stimulus rotation and deformation. Invest. Ophthalm. Vis. Science Suppl., 34(4):1081, 1993.

[1299]
A. Sloman. What are the purposes of vision? CSRP 066, University of Sussex, 1987.

[1300]
E. E. Smith, C. Langston, and R. Nisbett. The case for rules in reasoning. Cognitive Science, 16:1-40, 1992.

[1301]
W. Smith, J. Dunn, K. Kirsner, and M. Randell. Colour in map displays: issues for task-specific display design. Interacting with Computers, 7:151-165, 1995.

[1302]
L. B. Smith, M. Gasser, and C. M. Sandhofer. Learning to talk about the properties of objects: a network model of the development of dimensions. In D. Medin, R. Goldstone, and P. Schyns, editors, Mechanisms of Perceptual Learning, pages 220-256. Academic Press, 1997.

[1303]
E. E. Smith. Categorization. In D. N. Osherson and E. E. Smith, editors, An invitation to cognitive science: Thinking, volume 2, pages 33-53. MIT Press, Cambridge, MA, 1990.

[1304]
B. Smith. Truth and the visual field. In J. Petitot, F. J. Varela, B. Pachoud, and J.-M. Roy, editors, Naturalizing phenomenology: issues in contemporary phenomenology and cognitive science. Stanford University Press, Stanford, CA, 1998. in press.

[1305]
P. H. A. Sneath and R. R. Sokal. Numerical taxonomy. W. H. Freeman, San Francisco, CA, 1973.

[1306]
H. P. Snippe and J. J. Koenderink. Discrimination thresholds for channel-coded systems. Biological Cybernetics, 66:543-551, 1992.

[1307]
J. G. Snodgrass and M. Vanderwart. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6:174-215, 1980.

[1308]
J. F. Soechting, F. Lacquaniti, and C. A. Terzuolo. Coordination of arm movements in 3D space: sensorimotor mapping during drawing movement. Neuroscience, 17:295-311, 1986.

[1309]
W. R. Softky and C. Koch. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci., 13:334-350, 1993.

[1310]
R. R. Sokal and F. J. Rohlf. Biometry. Freeman, NY, 1981.

[1311]
E. D. Sontag. Feedforward nets for interpolation and classification. J. Comp. Syst. Sci., 45:20-48, 1992.

[1312]
A. Spectorov. Generalization of object recognition across stimulus deformations. Master's thesis, Weizmann Institute of Science, Rehovot, Israel, October 1993.

[1313]
E. S. Spelke. Origins of visual knowledge. In D. N. Osherson, S. M. Kosslyn, and J. M. Hollerbach, editors, Visual cognition and action, volume 2, pages 99-128. MIT Press, Cambridge, MA, 1990.

[1314]
B. Spinoza. The Ethics. J. Simon Publisher, Malibu, CA, 1677/1981.

[1315]
H. Spitzer, R. Desimone, and J. Moran. Increased attention enhances both behavioral and neuronal performance. Science, 240:338-340, 1988.

[1316]
H. Spitzer and S. Hochstein. Complex-cell receptive field models. Progress in neurobiology, 31:285-309, 1988.

[1317]
O. Sporns, G. Tononi, and G. M. Edelman. Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proceedings of the National Academy of Science, 88:129-133, 1991.

[1318]
S.N. Srihari and R.M. Bov zinovi& acute;c. A multi-level perception approach to reading cursive script. Artificial Intelligence, 33:217-255, 1987.

[1319]
K. Srinivas and J. Schwoebel. Memory for novel rotated views of objects: Evidence for view combination. Memory and Cognition, 1997. in press.

[1320]
K. Srinivas. Perceptual specificity in nonverbal priming. Journal of Experimental Psychology: Learning, Memory and Cognition, 19:582-602, 1993.

[1321]
V. S. Srinivasan and N. N. Murthy. Detection of singular points in fingerprint images. Pattern Recognition, 25:139-153, 1992.

[1322]
I. Stainvas, N. Intrator, and A. Moshaiov. Improving recognition via reconstruction, 1997. submitted.

[1323]
L. Standing. Learning 10000 pictures. Q. J. Exp. Psychol., 25:207-222, 1973.

[1324]
C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM, 29:1213-1228, 1986.

[1325]
B. Stankiewicz and J. Hummel. MetriCat: a representation for basic and subordinate-level classification. In G. W. Cottrell, editor, Proceedings of 18th Annual Conf. of the Cognitive Science Society, pages 254-259, San Diego, CA, July 1996.

[1326]
L. Stark, D. Eggert, and K. Bowyer. Aspect graphs and nonlinear optimization in 3-d object recognition. In Proceedings of the 2nd International Conference on Computer Vision, pages 501-507, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1327]
S. B. Steinman. Serial and parallel search in pattern vision? Perception, 16:389-398, 1987.

[1328]
K. A. Stevens, M. Lees, and A. Brookes. Combining binocular and monocular curvature features. Perception, 20:425-440, 1991.

[1329]
K. A. Stevens and A. Brookes. Probing depth in monocular images. Biological Cybernetics, 56:355-366, 1987.

[1330]
K. A. Stevens and A. Brookes. Integrating stereopsis with monocular interpretation of planar surfaces. Vision Research, 28:371-386, 1988.

[1331]
K. Stevens. The visual interpretation of surface contours. Artificial Intelligence, 17:47-75, 1981.

[1332]
J. Stewman and K. Bowyer. Creating the perspective projection aspect graph of polyhedral objects. In Proceedings of the 2nd International Conference on Computer Vision, pages 494-500, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1333]
S. Stich. From folk psychology to cognitive science: the case against belief. MIT Press, Cambridge, MA, 1983.

[1334]
S. Stich. The fragmentation of reason. MIT Press, Cambridge, MA, 1990.

[1335]
J. Stone and B. Dreher. Parallel processing of information in the visual pathways. Trends in Neurosciences, 3:441-446, 1982.

[1336]
C. J. Stone. Optimal global rates of convergence for nonparametric regression. Annals of statistics, 10:1040-1053, 1982.

[1337]
J. V. Stone. A canonical microfunction for learning perceptual invariances. Perception, 25:207-220, 1996.

[1338]
J. V. Stone. Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Computation, 8:1463-1492, 1996.

[1339]
G. R. Stoner, T. D. Albright, and V. S. Ramachandran. Transparency and coherence in human motion perception. Nature, 344:153-155, 1990.

[1340]
D. G. Stork and H. R. Wilson. Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? Journal of the Optical Society of America, 7:1362-1373, 1990.

[1341]
G. Strang. Wavelets and dilation equations: a brief introduction. SIAM Review, 31:614-627, 1989.

[1342]
T. M. Strat and M. A. Fischler. One-eyed stereo: a general approach to modeling 3-D scene geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:730-741, 1986.

[1343]
G. Stratton. Vision without inversion of the retinal image. In W. N. Dember, editor, Visual perception: the nineteenth century, pages 143-154. Wiley, 1897/1964.

[1344]
M. P. Stryker. Cortical physiology: Is grandmother an oscillation? Nature, 338:297-298, 1989.

[1345]
C. Y. Suen. Handwriting generation, perception and recognition. Acta Psychologica, 54:295-312, 1983.

[1346]
T. Sugihara, S. Edelman, and K. Tanaka. Representation of objective similarity in the monkey. Invest. Ophthalm. Vis. Sci. Suppl. (Proc. ARVO), 37, 1996. abstract.

[1347]
T. Sugihara, S. Edelman, and K. Tanaka. Representation of objective similarity among three-dimensional shapes in the monkey. Biological Cybernetics, 78:1-7, 1998.

[1348]
D. Sundararaman. Moduli, deformations and classifications of compact complex manifolds. Pitman, 1980.

[1349]
P. Suppes, M. Pavel, and J. Falmagne. Representations and models in psychology. Ann. Rev. Psychol., 45:517-544, 1994.

[1350]
M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer Vision, 7:11-32, 1991.

[1351]
N. V. Swindale and M. S. Cynader. Vernier acuity of neurones in cat visual cortex. Nature, 319:591-593, 1986.

[1352]
K. Tanaka, Y. Fukada, and H. Saito. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the Macaque monkey. J. Neurophysiology, 62:642-656, 1989.

[1353]
K. Tanaka, H. Saito, Y. Fukada, and M. Moriya. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol., 66:170-189, 1991.

[1354]
J. W. Tanaka and M. J. Farah. Parts and wholes in face recognition. Quarterly J. Exp. Psychol., 46A:225-245, 1993.

[1355]
J. Tanaka and I. Gauthier. Expertise in object and face recognition. In D. Medin, R. Goldstone, and P. Schyns, editors, Mechanisms of Perceptual Learning, pages 85-125. Academic Press, 1997.

[1356]
K. Tanaka. Inferotemporal cortex and higher visual functions. Current Opinion in Neurobiology, 2:502-505, 1992.

[1357]
K. Tanaka. Column structure of inferotemporal cortex: ``visual alphabet'' or ``differential amplifiers''? In Proc. IJCNN-93, Nagoya, 1993.

[1358]
K. Tanaka. Neuronal mechanisms of object recognition. Science, 262:685-688, 1993.

[1359]
K. Tanaka. Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19:109-139, 1996.

[1360]
K. Tanaka. Mechanisms of visual object recognition: monkey and human studies. Current Opinion in Neurobiology, 7:523-529, 1997.

[1361]
C. C. Tappert. Cursive script recognition by elastic matching. IBM J. of Research and Development, 26:765-771, 1982.

[1362]
M. J. Tarr, H. H. Bülthoff, M. Zabinski, and V. Blanz. To what extent do unique parts influence recognition across changes in viewpoint? Psychological Science, 8:282-289, 1997.

[1363]
M. J. Tarr and H. H. Bülthoff. Is human object recognition better described by geon-structural-descriptions or by multiple-views? Journal of Experimental Psychology: Human Perception and Performance, 21:1494-1505, 1995.

[1364]
M. J. Tarr and I. Gauthier. Do viewpoint-dependent mechanisms generalize across members of a class? Cognition, 1998. in press.

[1365]
M. J. Tarr and S. Pinker. Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21:233-282, 1989.

[1366]
M. J. Tarr and S. Pinker. When does human object recognition use a viewer-centered reference frame? Psychological Science, 1:253-256, 1990.

[1367]
M. J. Tarr. Orientation dependence in three-dimensional object recognition. PhD thesis, Dept. of Brain and Cognitive Sciences, MIT, 1989.

[1368]
M. J. Tarr. Rotating objects to recognize them: a case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonomic Bulletin & Review, 2:55-82, 1995.

[1369]
J. M. Tenenbaum, M. A. Fischler, and H. G. Barrow. Scene modeling: a structural basis for image description. In A. Rosenfeld, editor, Image Modeling, pages 371-389. Academic Press, New York, 1981.

[1370]
D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:413-424, 1986.

[1371]
M. Theeuwen, L. E. Miller, and C. C. A. M. Gielen. Are the orientation of head and arm related during pointing movements? J. Motor Behav., 90:242-250, 1993.

[1372]
W. B. Thompson and J. K. Kearney. Inexact vision. In Workshop on motion, representation and analysis, pages 15-22, 1986.

[1373]
D. W. Thompson and J. L. Mundy. Three-dimensional model matching from an unconstrained viewpoint. In Proceedings of IEEE Conference on Robotics and Automation, pages 208-220, Raleigh, NC, 1987.

[1374]
P. Thompson. Margaret Thatcher: A new illusion. Perception, 9:483-484, 1980.

[1375]
S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature, 381:520-522, 1996.

[1376]
S. Thrun and T. Mitchell. Learning one more thing. In C. Mellish, editor, Proc. 14th IJCAI, volume 2, pages 1217-1223, San Mateo, CA, 1995. Morgan Kaufmann.

[1377]
L. L. Thurstone. The law of comparative judgement. Psychological Review, 34:273-286, 1927.

[1378]
A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. W. H. Winston, Washington, D.C., 1977.

[1379]
M. E. Tipping and C. M. Bishop. Mixtures of probabilistic Principal Component Analyzers. NCRG 97/003, Aston University, June 1997.

[1380]
J. T. Todd and E. Mingolla. Perception of surface curvature and direction of illumination from patterns of shading. J. Exp. Psychol.: HPP, 9:583-595, 1983.

[1381]
J. T. Todd and F. Reichel. Perception of ordinal depth relations from patterns of shading. J. Exp. Psychol.: HPP, 16:583-595, 1990.

[1382]
A. Toet and D. M. Levi. The two-dimensional shape of spatial interaction zones in the parafovea. Vision Research, 32:1349-1357, 1992.

[1383]
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. International Journal of Computer Vision, 9:137-154, 1992.

[1384]
M. Tomonaga and T. Matsuzawa. Perception of complex geometric figures in chimpanzees (pan troglodytes) and humans (homo sapiens): analyses of visual similarity on the basis of choice reaction time. J. Comparative Psychol., 106:43-52, 1992.

[1385]
W. S. Torgerson. The ideal type model. In H. Wainer and S. Messick, editors, Advances in Psychometric Theory: A Festschrift for Frederic M. Lord, pages 329-341. Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

[1386]
K. E. Torrance and E. M. Sparrow. Polarization, directional distribution, and off-specular peak phenomena in light reflected from roughened surfaces. Journal of the Optical Society of America, 56:916-925, 1966.

[1387]
V. Torre and T. Poggio. A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. B, 202:409-416, 1978.

[1388]
V. Torre and T. Poggio. On edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:147-163, 1986.

[1389]
R. Torretti. Philosophy of geometry from Riemann to Poincaré. D. Reidel, Dordrecht, 1984.

[1390]
M. J. Tovee, E. T. Rolls, and P. Azzopardi. Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert monkey. J. of Neurophysiology, 72:1049-1060, 1994.

[1391]
A. Treisman and G. Gelade. A feature integration theory of attention. Cognitive Psychology, 12:97-136, 1980.

[1392]
A. Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image Processing, 31:156-177, 1985.

[1393]
S. Treue and R. A. Andersen. 3-D structure from motion: rigidity and surface interpolation. Invest. Ophthalm. Vis. Sci., 31 (4):172, 1992.

[1394]
S. Treue and J. Maunsell. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382:539-542, 1996.

[1395]
R.Y. Tsai and T.S. Huang. Uniqueness and estimation of three dimensional motion parameters of rigid objects with curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:13-27, 1984.

[1396]
T. Tsao and L. Kanal. A Lie group approach to visual perception. TR 1851, U. of Maryland, College Park, MD, 1987.

[1397]
L. W. Tucker, C. R. Feynman, and D. M. Fritzsche. Object recognition using the Connection Machine. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 871-878, Ann Arbor, MI, 1988.

[1398]
E. Tulving and D. L. Schacter. Priming and human memory systems. Science, 247:301-306, 1990.

[1399]
M. Turk and A. Pentland. Eigenfaces for recognition. J. of Cognitive Neuroscience, 3:71-86, 1991.

[1400]
A. Tversky and I. Gati. Studies of similarity. In E. Rosch and B. Lloyd, editors, Cognition and Categorization, pages 79-98. Erlbaum, 1978.

[1401]
A. Tversky and I. Gati. Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychological Review, 89:123-154, 1982.

[1402]
B. Tversky and K. Hemenway. Objects, parts and categories. J. Exp. Psychol.: General, 113:169-193, 1984.

[1403]
A. Tversky and J. W. Hutchinson. Nearest neighbor analysis of psychological spaces. Psychological Review, 93:3-22, 1986.

[1404]
A. Tversky. Features of similarity. Psychological Review, 84:327-352, 1977.

[1405]
D. Tweed and T. Vilis. Implications of rotational kinematics for the oculomotor system in three dimensions. J. Neurophysiol., 58:832-849, 1987.

[1406]
S. Ullman and R. Basri. Recognition by linear combinations of models. A.I. Memo No. 1152, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1990.

[1407]
S. Ullman and R. Basri. Recognition by linear combinations of models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:992-1005, 1991.

[1408]
J. R. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM, 23:31-42, 1976.

[1409]
S. Ullman. Filling in the gaps: the shape of subjective contours and a model for their generation. Biological Cybernetics, 25:1-6, 1976.

[1410]
S. Ullman. Relaxation and constrained optimization by local processes. Computer Graphics and Image Processing, 10:115-125, 1976.

[1411]
S. Ullman. The interpretation of visual motion. MIT Press, Cambridge, MA, 1979.

[1412]
S. Ullman. Against direct perception. Behavioral and Brain Sciences, 3:373-416, 1980.

[1413]
S. Ullman. The effect of similarity between line segments on the correspondence strength in apparent motion. Perception, 9:617-626, 1981.

[1414]
S. Ullman. Computational studies in the interpretation of structure and motion: summary and extension. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and Machine Vision. Academic Press, New York, 1983.

[1415]
S. Ullman. Visual routines. A.I. Memo No. 723, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1983.

[1416]
S. Ullman. Maximizing rigidity: the incremental recovery of 3D structure from rigid and rubbery motion. Perception, 13:255-274, 1984.

[1417]
S. Ullman. Visual routines. Cognition, 18:97-159, 1984.

[1418]
S. Ullman. The optical flow of planar surfaces. A.I. Memo No. 870, 1985.

[1419]
S. Ullman. An approach to object recognition: Aligning pictorial descriptions. A.I. Memo No. 931, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, December 1986.

[1420]
S. Ullman. Aligning pictorial descriptions: an approach to object recognition. Cognition, 32:193-254, 1989.

[1421]
S. Ullman. Sequence-seeking and counter-streams: a model for information flow in the cortex. A.I. Memo No. 1311, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991. Cerebral Cortex, 1995, in press.

[1422]
S. Ullman. Sequence-seeking and counter-streams: a model for information flow in the cortex. Cerebral Cortex, 5:1-11, 1995.

[1423]
S. Ullman. High level vision. MIT Press, Cambridge, MA, 1996.

[1424]
L. Ungerleider and J. V. Haxby. `What' and `where' in the human brain. Current Opinion in Neurobiology, 4:157-165, 1994.

[1425]
M. Usher, M. Stemmler, C. Koch, and Z. Olami. Network amplification of local fluctuations causes high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Computation, 6:795-836, 1994.

[1426]
L. Vaina and N. M. Grzywacz. Structure from motion with impaired local-speed and global motion-field computations, 1989. submitted.

[1427]
J. Väisälä. Lectures on n-dimensional quasiconformal mappings. Number 229 in Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1971.

[1428]
J. Väisälä. Domains and maps. In M. Vuorinen, editor, Quasiconformal space mappings, number 1508 in Lecture Notes in Mathematics, pages 119-131. Springer-Verlag, Berlin, 1992.

[1429]
T. Valentine and V. Bruce. The effects of distinctiveness in recognising and classifying faces. Perception, 15:525-535, 1986.

[1430]
T. Valentine and V. Bruce. Recognizing familiar faces: The role of distinctiveness and familiarity. Canadian Journal of PsychologyPerception, 40:300-305, 1986.

[1431]
T. Valentine. Representation and process in face recognition. In R. Watt, editor, Vision and visual dysfunction, volume 14, chapter 9, pages 107-124. Macmillan, London, 1991.

[1432]
L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.

[1433]
D. C. Van Essen, W. T. Newsome, and J. L. Bixby. The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the Macaque monkey. J. Neurosci., 2:265-283, 1982.

[1434]
T. van Gelder. Compositionality: A connectionist variation on a theme. Cognitive Science, 14:355-384, 1990.

[1435]
V. Vapnik. The nature of statistical learning theory. Springer-Verlag, Berlin, 1995.

[1436]
M. Venturino and D. Gagnon. Information tradeoffs in complex stimulus structure: local and global levels in naturalistic scenes. Perception and Psychophysics, 52:425-436, 1992.

[1437]
A. Verri and T. Poggio. Against quantitative optical flow. In Proceedings of the 1st International Conference on Computer Vision, pages 171-180, London, England, June 1987. IEEE, Washington, DC.

[1438]
T. Vetter, T. Poggio, and H. H. Bülthoff. 3D object recognition: Symmetry and virtual views. A.I. Memo No. 1409, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1992.

[1439]
T. Vetter, T. Poggio, and H. H. Bülthoff. The importance of symmetry and virtual views in three-dimensional object recognition. Current Biology, 4:18-23, 1994.

[1440]
T. Vetter, A. Hurlbert, and T. Poggio. View-based models of 3d object recognition: Invariance to imaging transformations. Cerebral Cortex, 5:261-269, 1995.

[1441]
T. Vetter, M. J. Jones, and T. Poggio. A bootstrapping algorithm for learning linear models of object classes. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 40-46, Puerto Rico, 1997.

[1442]
T. Vetter and T. Poggio. Symmetric 3D objects are an easy case for 2D object recognition. Spatial Vision, 8:443-453, 1994.

[1443]
T. Vetter and T. Poggio. Image synthesis from a single example image. In B. Buxton and R. Cipolla, editors, Proc. ECCV-96, number 1065 in Lecture Notes in Computer Science, pages 652-659, Berlin, 1996. Springer.

[1444]
T. Vetter and T. Poggio. Linear object classes and image synthesis from a single example image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:733-742, 1997.

[1445]
R. Vogels and G. A. Orban. The effect of practice on the oblique effect in line orientation judgements. Vision Research, 25:1679-1687, 1985.

[1446]
G. von Békésy. Zur theorie des Hörens. Physikalische Zeitschrift, 30:115-125, 1929. see K. R. Boff, L. Kaufman and J. P. Thomas, eds., Handbook of perception and human performance, vol. I, ch. 15, p. 22 (Wiley, 1986: New York).

[1447]
R. von der Heydt, E. Peterhans, and G. Baumgartner. Illusory contours and cortical neurons' responses. Science, 224:1260-1262, 1984.

[1448]
C. von der Malsburg and W. Singer. Principles of cortical network organization. In P. Rakic and W. Singer, editors, Neurobiology of Neocortex, pages 69-100. Wiley, New York, NY, 1988.

[1449]
C. von der Malsburg. The correlation theory of brain function. Internal report 81-2, Max-Planck-Institut für Biophysikalische Chemie, Postfach 2841, 3400 Göttingen, Germany, 1981. Reprinted in Domany, E., van Hemmen, J. L., and Schulten, K., editors, Models of Neural Networks II, Chapter 2, 95-119. Springer, Berlin (1994).

[1450]
C. von der Malsburg. Binding in models of perception and brain function. Current Opinion in Neurobiology, 5:520-526, 1995.

[1451]
H. von Helmholtz. Unconscious conclusions. In W. N. Dember, editor, Visual perception: the nineteenth century, pages 163-170. Wiley, 1856/1964.

[1452]
G. K. von Noorden. Binocular vision and ocular motility. Mosby, St.Louis, 1990.

[1453]
H. Voorhees and T. Poggio. Computing texture boundaries from images. Nature, 333:364-367, 1988.

[1454]
E. Wachsmuth, M. W. Oram, and D. I. Perrett. Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque. Cerebral Cortex, 5:509-522, 1994.

[1455]
J. Wagemans, L. Van Gool, V. Swinnen, and J. Van Horebeek. Higher-order structure in regularity detection. Vision Research, 33:1067-1088, 1993.

[1456]
R. D. Walk. Perceptual learning. In E. C. Carterette and M. P. Friedman, editors, Handbook of Perception, volume IX, pages 257-298. Academic Press, New York, NY, 1978.

[1457]
H. Wallach and D. N. O'Connell. The kinetic depth effect. J. Exp. Psychol., 45:205-217, 1953.

[1458]
H. Wallach. On perceived identity: 1. the direction of motion of straight lines. In H. Wallach, editor, On Perception. Quadrangle, New York, 1976.

[1459]
G. Wallis and E. T. Rolls. A model of invariant object recognition in the visual system. Progress in Neurobiology, 51:167-194, 1997.

[1460]
D. Walters. Selection of image primitives for general-purpose visual processing. Computer Vision, Graphics, and Image Processing, 37:261-298, 1987.

[1461]
D. L. Waltz. Understanding line drawings of scenes with shadows. In P. Winston, editor, The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

[1462]
B. Wandell. Foundations of vision. Sinauer, Sunderland, MA, 1995.

[1463]
G. Wang, K. Tanaka, and M. Tanifuji. Optical imaging of functional organization in the monkey inferotemporal cortex. Science, 272:1665-1668, 1996.

[1464]
J. Y. A. Wang and E. H. Adelson. Representing moving images with layers. IEEE Trans. on Image Processing, 3:625-638, 1994.

[1465]
E. K. Warrington and A. M. Taylor. The contribution of the right parietal lobe to object recognition. Cortex, 9:152-164, 1973.

[1466]
S. Watanabe. Pattern recognition: human and mechanical. Wiley, New York, 1985.

[1467]
A. B. Watson. The cortex transform: rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing, 39:311-327, 1987.

[1468]
R. J. Watt, M. J. Morgan, and R. M. Ward. The use of different cues in vernier acuity. Vision Research, 23:991-995, 1983.

[1469]
R. Watt and F. W. Campbell. Vernier acuity: interactions between length effects and gaps when orientation effects are eliminated. Spatial Vision, 1:31-38, 1985.

[1470]
R. Watt and R. F. Hess. Spatial information and uncertainty in anisometropic amblyopia. Vision Research, 27:661-674, 1987.

[1471]
R. J. Watt and M. J. Morgan. Mechanisms responsible for the assessment of visual location: theory and evidence. Vision Research, 23:97-109, 1983.

[1472]
R. J. Watt and M. J. Morgan. Spatial filters and the localization of luminance changes in human vision. Vision Research, 24:1387-1397, 1984.

[1473]
R. J. Watt and M. J. Morgan. A theory of primitive spatial code in human vision. Vision Research, 25:1661-1674, 1985.

[1474]
R. J. Watt. Visual processing: computational, psychophysical, and cognitive research. Erlbaum, Hillsdale, NJ, 1988.

[1475]
A. M. Waxman and J. H. Duncan. Binocular image flows: Steps toward stereo-motion fusion. Technical Report Technical Report No. CAR-TR-119, University of Maryland, 1985.

[1476]
A. M. Waxman and S. Ullman. Surface structure and 3D motion from image flow: a kinematic analysis. International Journal of Robotics Research, 4:72-94, 1985.

[1477]
A. M. Waxman. An image flow paradigm. In Proc. Workshop on Computer Vision: Representation and Control, pages 49-57, Annapolis, MD, 1984. IEEE.

[1478]
A. M. Waxman. Image flow theory: a framework for 3D inference from time-varying imagery. In C. Brown, editor, Advances in Computer Vision. Erlbaum, Hillsdale, NJ, 1987.

[1479]
A. R. Webb. Multidimensional-scaling by iterative majorization using radial basis functions. Pattern Recognition, 28:753-759, 1995.

[1480]
H. Wechsler, editor. Neural Networks in Perception. Academic Press, New York, NY, 1991.

[1481]
U. Wehmeier, D. Dong, C. Koch, and D. Van Essen. Modeling the mammalian visual system. In C. Koch and I. Segev, editors, Methods in neuronal modeling: from synapses to networks, pages 335-359. MIT Press, Cambridge, MA, 1989.

[1482]
M. Wehr and G. Laurent. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384:162-165, 1996.

[1483]
D. Weinshall, S. Edelman, and H. H. Bülthoff. A self-organizing multiple-view representation of 3D objects. In D. Touretzky, editor, Neural Information Processing Systems, volume 2, pages 274-281. Morgan Kaufmann, San Mateo, CA, 1990.

[1484]
D. Weinshall, M. Werman, and N. Tishby. Stability and likelihood of views of three dimensional objects. In R. Basri, U. Schild, and Y. Stein, editors, Proc. 10th Israeli Symposium on Computer Vision and AI, pages 445-454, 1993.

[1485]
D. Weinshall and C. Tomasi. Linear and incremental acquisition of invariant shape models from image sequences. In Proceedings of the 4th International Conference on Computer Vision, pages 675-682, Washington, DC, 1993. IEEE.

[1486]
D. Weinshall and M. Werman. On view likelihood and stability. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:97-108, 1997.

[1487]
D. Weinshall. Application of qualitative depth and shape from stereo. In Proceedings of the 2nd International Conference on Computer Vision, pages 144-148, Tarpon Springs, FL, 1988. IEEE, Washington, DC.

[1488]
D. Weinshall. Direct computation of 3D shape and motion invariants. A.I. Memo No. 1131, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, May 1989.

[1489]
D. Weinshall. Perception of multiple transparent planes in stereo vision. Nature, 341:737-739, 1989.

[1490]
D. Weinshall. Qualitative depth from stereo, with applications. Computer Vision, Graphics, and Image Processing, 49:222-241, 1990.

[1491]
D. Weinshall. Model-based invariants for 3D vision. International Journal of Computer Vision, 10(1):27-42, 1993.

[1492]
Y. Weiss, S. Edelman, M. Fahle, and T. Poggio. Exploring varieties of perceptual learning with a biologically motivated HyperBF network model of vernier hyperacuity. CS-TR 91-21, Weizmann Institute of Science, November 1991.

[1493]
Y. Weiss, S. Edelman, and M. Fahle. Models of perceptual learning in vernier hyperacuity. Neural Computation, 5:695-718, 1993.

[1494]
Y. Weiss and S. Edelman. Representation with receptive fields: gearing up for recognition. CS-TR 93-09, Weizmann Institute of Science, 1993.

[1495]
Y. Weiss and S. Edelman. Representation of similarity as a goal of early visual processing. Network, 6:19-41, 1995.

[1496]
N. Weisstein and C. S. Harris. Visual detection of line segments: an object-superiority effect. Science, 186:752-755, 1974.

[1497]
P. Werkhoven and J. J. Koenderink. Extraction of motion parallax structure in the visual system. Biological Cybernetics, 63:185-199, 1990. parts I and II.

[1498]
G. Westheimer and S. P. McKee. Visual acuity in the presence of retinal image motion. Journal of the Optical Society of America, 65:847-850, 1975.

[1499]
G. Westheimer and S. P. McKee. Spatial configurations for visual hyperacuity. Vision Research, 17:941-947, 1977.

[1500]
G. Westheimer. Cooperative neural processes involved in stereoscopic acuity. Exp. Brain Res., 36:585-597, 1979.

[1501]
G. Westheimer. The spatial sense of the eye. Invest. Ophthal. Vis. Sci., 18:893-912, 1979.

[1502]
G. Westheimer. Visual hyperacuity. Prog. Sensory Physiol., 1:1-37, 1981.

[1503]
G. Westheimer. The grain of visual space. Cold Spring Harbor Symposia on Quantitative Biology, LV:759-763, 1990.

[1504]
B. Widrow and S. D. Stearns. Adaptive signal processing. Prentice Hall, Englewood Cliffs, NJ, 1985.

[1505]
A. Wierzbicka. Semantics: primes and universals. Oxford University Press, Oxford, 1996.

[1506]
E. P. Wigner. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure Appl. Math., XIII:1-14, 1960.

[1507]
Y. Wilks, B. M. Slator, and L. Guthrie. Electric words: dictionaries, computers and meanings. MIT Press, Cambridge, MA, 1996.

[1508]
J. Willats. Seeing lumps, sticks, and slabs in silhouettes. Perception, 21:481-496, 1992.

[1509]
P. Williams and M. J. Tarr. Orientation-specific possibility priming for novel three-dimensional objects. Perception and Psychophysics, -:--, 1998. in press.

[1510]
L. R. Williams and K. K. Thornber. A comparison of measures for detecting natural shapes in cluttered backgrounds. In Proc. ICCV, pages 432-448. IEEE, 1998.

[1511]
D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory. Nature, 222:960-962, 1969.

[1512]
D. Willshaw, J. Hallam, S. Gingell, and S. L. Lau. Marr's theory of the neocortex as a self-organizing neural network. Neural Computation, 9:911-936, 1997.

[1513]
D. Willshaw. Holography, associative memory, and inductive generalization. In G. E. Hinton and J. A. Anderson, editors, Parallel models of associative memory. Erlbaum, Hillsdale, NJ, 1981.

[1514]
H. R. Wilson and J. R. Bergen. A four mechanism model for threshold spatial vision. Vision Research, 19:19-32, 1979.

[1515]
H. R. Wilson and D. J. Gelb. Modified line-element theory for spatial frequency and width discrimination. Journal of the Optical Society of America, 1:124-131, 1984.

[1516]
F. A. W. Wilson and E. Rolls. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Exp. Brain Research, 93:367-382, 1993.

[1517]
H. R. Wilson. Responses of spatial mechanisms can explain hyperacuity. Vision Research, 26:453-469, 1986.

[1518]
H. R. Wilson. Pattern discrimination, visual filters, and spatial sampling irregularity. In M. S. Landy and J. A. Movshon, editors, Computational models of visual processing, pages 153-168. MIT Press, Cambridge, MA, 1991.

[1519]
P. Winston, editor. The psychology of computer vision. McGraw-Hill, New York, 1975.

[1520]
N. Wirth. Algorithms + Data Structures = Programs. Prentice Hall, New York, 1976.

[1521]
L. Wiscott, J.-M. Fellous, N. Krüger, and C. von der Malsburg. Face recognition and gender determination. In Proceedings of the International Workshop on Automatic Face- and Gesture-Recognition, IWAFGR'95, pages 92-97, Zurich, 1995.

[1522]
L. Wiskott and C. von der Malsburg. A neural system for the recognition of partially occluded objects in cluttered scenes. Int. J. of Pattern Recognition and Artificial Intelligence, 7:935-948, 1993.

[1523]
A. P. Witkin and J. M. Tenenbaum. On perceptual organization. In From Pixels to Predicates, pages 149-169. Ablex, Norwood, NJ, 1986.

[1524]
A. P. Witkin. Recovering surface shape and orientation from texture. Artificial Intelligence, 17:17-45, 1981.

[1525]
A.P. Witkin. Recovering intrinsic scene characteristics for images. In SRI AIMemo, 1981.

[1526]
A. P. Witkin. Intensity-based edge classification. In Proceedings AAAI, pages 36-41, 1982.

[1527]
A. P. Witkin. Scale-space filtering. In Proceedings IJCAI, pages 1019-1022, 1983.

[1528]
L. Wittgenstein. Philosophical Investigations. Blackwell, London, 1973.

[1529]
L. E. Wixson and D. H. Ballard. Real-time qualitative detection of multi-colored objects for object search. In Proc. AAAI-90 Workshop on Qualitative Vision, pages 46-50, San Mateo, CA, 1990. Morgan Kaufmann.

[1530]
R. J. Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19:139-144, 1980.

[1531]
R. P. Würtz, J. C. Vorbrüggen, and C. von der Malsburg. A transputer system for the recognition of human faces by labeled graph matching. In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 37-41. North Holland, Amsterdam, 1990.

[1532]
Y. Yeshurun and E. L. Schwartz. Cepstral filtering on a columnar image architecture: a fast algorithm for binocular stereo segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:759-767, 1989.

[1533]
R. K. Yin. Looking at upside-down faces. Journal of Experimental Psychology, 81:141-145, 1969.

[1534]
M. Young, K. Tanaka, and S. Yamane. On oscillating neuronal responses in the visual cortex of the monkey. J. of Neurophysiology, 67:1464-1474, 1992.

[1535]
G. Young and A. S. Householder. Discussion of a set of points in terms of their mutual distances. Psychometrika, 3:19-22, 1938.

[1536]
M. P. Young and S. Yamane. Sparse population coding of faces in the inferotemporal cortex. Science, 256:1327-1331, 1992.

[1537]
M. P. Young. Objective analysis of the topological organization of the primate cortical visual system. Nature, 358:152-155, 1992.

[1538]
A. L. Yuille, D. S. Cohen, and P. W. Hallinan. Feature extraction from faces using deformable templates. In Proc. CVPR-89, pages 104-109, San Diego, CA, 1989.

[1539]
A. L. Yuille, P. W. Hallinan, and D. S. Cohen. Feature extraction from faces using deformable templates. International Journal of Computer Vision, pages 99-112, 1992.

[1540]
A. L. Yuille and N. M. Grzywacz. A computational theory for the perception of coherent visual motion. Nature, 333:71-74, 1988.

[1541]
A. L. Yuille and N. M. Grzywacz. A winner-take-all mechanism based on presynaptic inhibition feedback. Neural Computation, 1:334-347, 1989.

[1542]
D. Yuret. Discovery of Linguistic Relations Using Lexical Attraction. PhD thesis, MIT, Cambridge, MA, May 1998.

[1543]
S. Zeki and S. Shipp. The functional logic of cortical connections. Nature, 335:311-317, 1988.

[1544]
R. S. Zemel and G. E. Hinton. Discovering viewpoint-invariant relationships that characterize objects. In D. Touretzky, editor, Neural Information Processing Systems, volume 3, San Mateo, CA, 1991. Morgan Kaufmann.

[1545]
C. Zetsche, E. Barth, and B. Wegmann. The importance of intrisically two dimensional features in biological vision and picture coding. In A.B. Watson, editor, Digital Images and Human Vision, pages 110-138. MIT Press, 1993.

[1546]
S. C. Zhu and A. L. Yuille. FORMS: a flexible object recognition and modeling system. International Journal of Computer Vision, 20:187-212, 1996.

[1547]
V. A. Zorich. The global homeomorphism theorem for space quasiconformal mappings. In M. Vuorinen, editor, Quasiconformal space mappings, number 1508 in Lecture Notes in Mathematics, pages 132-148. Springer-Verlag, Berlin, 1992.

[1548]
A. Zuboff. The story of a brain. In D. R. Hofstadter and D. C. Dennett, editors, The Mind's I, pages 202-212. Basic Books, New York, NY, 1981.

[1549]
S. W. Zucker, A. Dobbins, and L. Iverson. Two stages of curve detection suggest two styles of visual computation. Neural Computation, 1:68-81, 1989.